Nutrient rich, low fat, high fiber, carrot product, and...

Food or edible material: processes – compositions – and products – Products per se – or processes of preparing or treating... – Plant material is basic ingredient other than extract,...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C426S489000, C426S492000, C426S518000, C426S639000

Reexamination Certificate

active

06361818

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to nutrients rich low fat high fiber carrot product. It also relates to a process for the preparation of the carrot product and a formulation comprising the same.
BACKGROUND OF THE INVENTION
The therapeutic and nutritious effects of diets rich in fruits, and vegetables in general and carrots (
Daucus carota
) in particular are well known. “Effects of processing on the dietary fiber content of wheat bran, pureed green beans and carrots”. Journal of food Science, 1980, 45, 1533-1534. N. E. Anderson and F. M. Clydesdale. “Fiber-mediated physiological effects of raw and processed carrots in humans”, Br. J Nutr., 1994 72:579-599; Wisker E., Schweiizer T. F. et al. “Influence of experimental diets on cholesterol and triglyceride levels of rabbit blood serum lipoproteins”, Acta. Physiol. Pol. 1988 39:202-206; Wehr H., Naruszewicz M. et al. “Dietary Fiber constitutes of selected fruits and vegetables”. J. Am. Diet. Assoc., 1985:85: 1111-1116; Ross. J. K. et al. “The effect of raw carrot on serum lipids and colon function” Am. J. Clin Nutr., 1979; 32:1889-92; Robertson J., Brydon W. G. et al. “Colonic response to dietary fiber from carrot, cabbage, apple, bran.” Lancet 1978; 1 (8054):5-9; Cummings J. H., Branch W. et al. “Carrot pulp chemical composition, colour, and water holding capacity as affected by blanching”. J Food Science, 1994; 59; 1159-1164; B. Bao and K. C. Chang. “Binding of dietary anions to vegetable fiber.” J. Agric. Food Chem. 1989, 37, 1343-1347; Peter D. Hoagland. “Cobinding of bile acids to carrot fiber” J. Agric. Food Chem. 1987 35, 316-319; Peter D. Hoagland, Philip E. Pfeffer, “Diet as a risk factor for peripheral arterial disease in the general population: The Edinbourgh Artery Study”, Am J Clin Nutr, 1993 57; 917-921, Peter T Donnan et al.
Diets rich in fiber and low in fat are in modern times recommended to be medically useful for subnormal mammalian conditions of different etiologies. For instance, they counter the harmful effects of fiber-deficient diets responsible for constipation, diverticulosis or irritable bowel syndrome (IBS). Diets low in fat and rich in fiber reduce cholesterol and triglyceride levels, coronary heart disease mortality and overall risk of cancer. A high fiber diet is important in pregnancy, old age and during the convalescence period following a heart attack. High fiber diets help in obesity treatment by decreasing meal-size and giving a sense of fullness and early satiation. Natural products such as vegetables and fruits are invariable sources of fiber. Especially well known high fiber products are those prepared from isapgol (
Plantago ovata
) or bran from, for example, oat or wheat.
Holistic systems of medicine such as the Ayurvedic system of medicine have for centuries been advocating the synergistic value of dispensing not just pure natural product ingredients but the complete set of nutrients as they are present in the natural source, a concept rapidly gaining new supporters in modern medicine.
Carrots are a unique natural source for providing a dietary fiber product for several reasons. Carrot fiber comprises both soluble fiber and insoluble fiber. This quality is unlike that found in fiber from isapgol and guar-gum (cyamopsis tetragonoloba) which contain mostly soluble fiber and fiber found in bran is mostly insoluble fiber. Soluble fiber is valuable for the management of hypercholesteremia. Insoluble fiber is most likely to benefit patients with atonic motor disorder. Insoluble fiber slows intestinal propulsion and is useful for diarrhoea affected IBS patients, whereas the action of the soluble part of the fiber is variable. The protective effect of insoluble fiber in lessening the risk of colon cancer is attributed to its dilution of colon contents. Carrot fiber contains lignin only in traces and is high in pectin content. The soluble fiber consists principally of a special type of pectin which reduces glucose uptake. The pectin fraction is composed not only of molecules with randomly distributed carboxyl groups but also of at least 50% of pectin molecules in which blocks of free carboxylic groups are available. Carrot fibers are especially effective in binding bile acids and reducing cholesterol levels. Carrot fiber constituents are highly fermentable producing short chain fatty acids known to decrease the rate of synthesis of cholesterol and glucose and to inhibit cancer. Therapeutic effects of carrots on human eyes are also known. Fresh carrots are, however, required to be consumed in very large quantities for therapeutic benefits. There is no standard or set limit of quantity to be consumed for such benefits.
U.S. Pat. No. 5,403,612 is concerned with a phosphorylated pectin-containing fiber product which is a low-cost, crude, human-consumable, pectin-containing fiber possessing the gelling effects of fully refined pectin. Fiber obtained from a food such as applies, barley, carrots, corn, grapefruit, oats, oranges, peas, rice, sugarbeet, sugar cane and wheat is treated with a dissociable phosphate reactant followed by removal of excess water from the treated fiber and drying thereof.
U.S. Pat. No. 5,354,851 relates to a low-cost, crude, human-consumable, pectic material containing fiber. Fiber obtained from fruits such as apples, lemons, oranges, and grapes, vegetables such as carrots and sugar beets and grasses such as sugar cane is treated with a reactant capable of chemically coupling alkaline earth metal ions to the exposed pectin on fiber.
U.S. Pat. No. 5,304,374 describes an edible pulp having enhanced hypocholesterolemic effect. The natural bile acid binding capacity of edible pulp material from fruits such as apples, oranges and grapes, vegetables such as carrots, corn, peas and sugar beets, grains such as barley, oats, rice and wheat and grasses such as sugar cane is enhanced by heating an aqueous slurry of the pulp material to at least 40° C. and/or sequentially reacting the pulp material with a reactant such as sodium hydroxide for activating the pendant groups on the polysaccharide component followed by addition of calcium chloride at a pH of less than about 7.
U.S. Pat. No. 4,956,187 describes iron enriched food products. Pulverised soyabean or carrot or a mixture of the two is hydrolysed with saccharide-decomposing enzyme and an iron compound is added to the hydrolysate followed by inoculation with yeast. The food products contain iron in readily absorbable and adverse reaction-free form and are useful as meal for patients.
U.S. Pat. No. 4,789,553 is concerned with chemical sterilisation and prevention of discolouration of low acid heat-sensitive foodstuffs such as low acid heat-sensitive vegetables and cereal grain products such as carrots, zucchini, asparagus, spears, cauliflower, yellow squash, rice, potatoes or cantaloupes by treatment with gluconic acid and its lactones whereby flavour, colour or texture of the foodstuffs is retained.
U.S. Pat. No. 4,770,880 relates to a fiber-rich vegetable material capable of absorbing mutagen. Fibers from vegetables are separated, boiled, washed with water and dewatered followed by dehydration involving co-drying the fibers with carrier materials. It gives an ingestible product including fiber-rich vegetable material made from cabbage, radish, bamboo sprout, onion, carrot, pimiento, spinach, soyabean malt, and asparagus.
U.S. Pat. No. 4,372,984 is concerned with improvement of consistency of reconstituted instant puree of vegetables. Crude vegetable fibers such as fibers of tubers, cereals or fruits are incorporated in an instant puree, for example a potato, carrot or split pea puree in quantities of at most 10% by dry weight of fibers based on the dry matter content of the puree. Crude fibers are suspended in water, sterilised by steam injection, cooled and dryed.
U.S. Pat. No. 3,894,157 describes colour stabilisation in freeze-dried carrots with ascorbic and erythorbic acids. An aqueous ascorbic or erythorbic acid solution infused throughout decorticated, blanched subdivided carrots just prior to freezing effects reduc

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Nutrient rich, low fat, high fiber, carrot product, and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Nutrient rich, low fat, high fiber, carrot product, and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Nutrient rich, low fat, high fiber, carrot product, and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2856585

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.