Chemistry: molecular biology and microbiology – Apparatus – Including condition or time responsive control means
Reexamination Certificate
1999-10-18
2002-08-06
Redding, David A. (Department: 1744)
Chemistry: molecular biology and microbiology
Apparatus
Including condition or time responsive control means
C435S286600, C435S287200, C435S287300, C435S287600, C435S288500, C422S064000
Reexamination Certificate
active
06429007
ABSTRACT:
BACKGROUND OF THE INVENTION
A. Field of the Invention
This invention relates to the field of methods and devices for performing nucleic acid amplification reactions. More particularly, the invention relates to an automated instrument for performing nucleic acid amplification reactions.
B. Description of Related Art
Nucleic acid based amplification reactions are now widely used in research and clinical laboratories for the detection of genetic and infectious diseases. The currently known amplification schemes can be broadly grouped into two classes, based on whether, after an initial denaturing step (typically performed at a temperature of ≧65 degrees C) for DNA amplifications or for RNA amplifications involving a high amount of initial secondary structure, the reactions are driven via a continuous cycling of the temperature between the denaturation temperature and a primer annealing and amplicon synthesis (or polymerase activity) temperature (“cycling reactions”), or whether the temperature is kept constant throughout the enzymatic amplification process (“isothermal reactions”). Typical cycling reactions are the Polymerase and Ligase Chain Reaction (PCR and LCR, respectively). Representative isothermal reaction schemes are NASBA (Nucleic Acid Sequence Based Amplification), Transcription Mediated Amplification (TMA), and Strand Displacement Amplification (SDA). In the isothermal reactions, after the initial denaturation step (if required), the reaction occurs at a constant temperature, typically a lower temperature at which the enzymatic amplification reaction is optimized.
Prior to the discovery of thermostable enzymes, methodologies that used temperature cycling were seriously hampered by the need for dispensing fresh polymerase into an amplification tube (such as a test tube) after each denaturation cycle, since the elevated temperature required for denaturation inactivated the polymerase during each cycle. A considerable simplification of the PCR assay procedure was achieved with the discovery of the thermostable Taq polymerase (from Thermophilus aquaticus). This improvement eliminated the need to open amplification tubes after each amplification cycle to add fresh enzyme. This led to the reduction of both the contamination risk and the enzyme-related costs. The introduction of thermostable enzymes has also allowed the relatively simple automation of the PCR technique. Furthermore, this new enzyme allowed for the implementation of simple disposable devices (such as a single tube) for use with temperature cycling equipment.
TMA requires the combined activities of at least two (2) enzymes for which no optimal thermostable variants have been described. For optimal primer annealing in the TMA reaction, an initial denaturation step (at a temperature of ≧65 degrees C) is performed to remove secondary structure of the target. The reaction mix is then cooled down to a temperature of 42 degrees C to allow primer annealing. This temperature is also the optimal reaction temperature for the combined activities of T7 RNA polymerase and Reverse Transcriptase (RT), which includes an endogenous RNase H activity or is alternatively provided by another reagent. The temperature is kept at 42 degrees C throughout the following isothermal amplification reaction. The denaturation step, which precedes the amplification cycle, however forces the user to add the enzyme to the test tube after the cool down period in order to avoid inactivation of the enzymes. Therefore, the denaturation step needs to be performed separately from the amplification step.
In accordance with present practice, after adding the test or control sample or both to the amplification reagent mix (typically containing the nucleotides and the primers), the test tube is subject to temperatures ≧65 degrees C and then cooled down to the amplification temperature of 42 degrees C. The enzyme is then added manually to start the amplification reaction. This step typically requires the opening of the amplification tube. The opening of the amplification tube to add the enzyme or the subsequent addition of an enzyme to an open tube is not only inconvenient, it also increases the contamination risk.
An alternative approach to amplification of a DNA sample is described in Corbett et al., U.S. Pat. No. 5,270,183. In this technique, a reaction mixture is injected into a stream of carrier fluid. The carrier fluid then passes through a plurality of temperature zones in which the polymerase chain reactions take place. The temperature of the different zones and the time elapsed asked for the carrier fluid to traverse the temperature zones is controlled such that three events occur: denaturation of the DNA strands, annealing of oligonucleotine primers to complemetary sequences in the DNA, and synthesis of the new DNA strands. A tube and associated temperature zones and pump means are provided to carry out the '183 patent process.
The present invention provides a nucleic acid amplification reaction system that substantially eliminates the risk of contamination, and provide a convenient, simple and easy to use approach for nucleic acid amplification reactions. The test devices and amplification station in accordance with the present invention achieves the integration of the denaturation step with the amplification step without the need for a manual enzyme transfer and without exposing the amplification chamber to the environment. The contamination risks from sample to sample contamination within the processing station are avoided since the amplification reaction chamber is sealed and not opened to introduce the patient sample to the enzyme. Contamination from environmental sources is avoided since the amplification reaction chamber remains sealed. The risk of contamination in nucleic acid amplification reactions is especially critical since large amounts of the amplification product are produced.
SUMMARY OF THE INVENTION
In a first aspect, a station is provided for conducting a nucleic acid amplification reaction that is conducted in a unitary, disposable test device. The test device has a first reaction chamber containing a first nucleic acid amplification reagent (such as primers and nucleotides) and a second reaction chamber either containing, or in fluid communication with, a second nucleic acid amplification reagent (e.g., an amplification enzyme such as RT).
The station includes a support structure receiving the test device. In the illustrated embodiment, the support structure comprises a set of raised ridges that receive a disposable test strip containing the reaction chambers. The station further includes a temperature control system for the test device. The temperature control system maintains the first reaction chamber at a first elevated temperature, wherein a reaction takes place in the first reaction chamber between a fluid sample or target and the first amplification reagent. However, the temperature control system simultaneously maintains the second nucleic acid amplification reagent at a second temperature lower than said first temperature so as to preserve said second nucleic acid amplification reagent. In the illustrated embodiment, the temperature control system comprises a pair of thermoelectric elements coupled to the support structure.
The station further comprises an actuator operative on the test device to place the first and second reaction chambers in fluid communication with each other. The first and second reaction chambers are normally isolated from each other by a closed valve in a connecting conduit linking the first and second chambers together. The actuator is perative on the test device after a reaction has occurred in the first reaction chamber at the first temperature. A second portion of nucleic acid amplification reaction, e.g., amplification of target RNA or DNA sequences in the sample, occurs in the second chamber with the second nucleic acid amplification reagent. The second nucleic acid amplification reagent is preserved by virtue of maintaining the reagent at the second (i.e., lower) temperat
Catanzariti Luigi
Colin Bruno
Cotter Christopher
Dachaud Jacques
Gennari Fabio
bioMerieux Inc.
McDonnell & Boehnen Hulbert & Berghoff
Redding David A.
LandOfFree
Nucleic acid amplification reaction station for disposable... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Nucleic acid amplification reaction station for disposable..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Nucleic acid amplification reaction station for disposable... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2941694