Nozzle air injection system for a fuel-injected engine

Internal-combustion engines – Charge forming device – Fuel injection system

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C123S542000, C123S563000, C123S564000

Reexamination Certificate

active

06769411

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to an apparatus and a control algorithm for selectively increasing the flow of air into a fuel injected engine to selectively improve power output, and particularly to the selective operation of an air compressor which is disposed in the air intake duct of a fuel injected engine and operated under the direction of a controller unit, wherein the controller unit operates under the direction of the control algorithm.
2. Description of the Related Art
Improving the efficiency and power output of an internal combustion engine has been a long term goal for engine manufacturers and users alike, both in the automobile industry and other sectors such as power boats, motorcycle, and farming sectors.
In seeking greater fuel efficiency and lower emissions, there has been a trend away from engines that rely on carburetors to mix fuel and air. Fuel injection systems are increasingly used in modern cars powered by internal combustion engines, and most cars sold in the United States have fuel injection systems. Fuel injection has been widely used in European cars since about 1980.
From time to time most car or automobile vehicle owners and drivers desire more horsepower from their vehicle's engine. Some drivers desire high horsepower at all times from their vehicle's engine. Other drivers, perhaps mindful of fuel and maintenance costs, desire extra power output from their vehicle's engine when pulling a heavy load, e.g., towing a caravan up a steep incline.
Owners or operators of a genuinely underpowered vehicle, such as an underpowered motor vehicle, or an underpowered water vehicle, such as an underpowered cabin cruiser, have a particular need for extra power output when the underpowered apparatus is under heavy load, e.g., when an underpowered cabin cruiser is moving against a fast flow of water and when an underpowered car is towing a heavy load up a hill. Thus, there is a long felt need for a means to increase the horsepower output from an engine but only when the driver desires more horsepower and when it is beneficial to the owner and vehicle to have more horsepower. Selectively increasing power output from an otherwise low power output engine can offer several advantages over replacing the engine with a bigger engine, e.g. savings on fuel and maintenance costs.
Several efforts have been made to address these problems. U.S. Pat. No. 2,839,038, issued Jun. 17, 1958 to C. E. Middlebrooks Jr., shows a supercharger for pressurizing an air fuel mix for an internal combustion engine and is adapted to be driven by one of a plurality of drive means. The supercharger design of the '038 patent is not adapted to work with a control box containing software logic to vary the performance of the '038 supercharger. Thus, the '038 supercharger is not adapted to selectively provide additional power output particularly when the engine is under heavy load.
U.S. Pat. No. 3,177,633, issued Apr. 13, 1965 to L. L. McDonald, Jr., describes an oxygen enricher for combustion engines. The '633 patent oxygen enricher is claimed to enrich the gas delivered to the carburetor of an internal combustion engine by allegedly differentiating between the peculiar paramagnetic property claimed for oxygen verses the claimed property of diamagnetism for other gases. Regardless of the merits positive or otherwise of the '633 oxygen enricher, the '633 oxygen enricher does not address or solve the problem of varying the output of an internal combustion engine in accordance with the variable demands placed on the engine.
U.S. Pat. No. 4,014,303, issued Mar. 29, 1977 to G. Aiti, shows a device for improved efficiency in internal combustion engines of motor-vehicles, comprising an air compressor supplying air downstream of the engine carburetor to which the device is applied. The air passage is controlled by a valve connected to the carburetor throttle. Downstream of the carburetor is a propeller which is rotatably driven by air supplied from the compressor and atomizes the fuel perfectly for mixing it with air. The requirement for an air compressor and a propeller adds to the cost of manufacture and maintenance. In addition, the '303 device takes no account of the trend away from carburetors towards fuel injected engines.
U.S. Pat. No. 4,020,815, issued May 3, 1977 to R. D. Hubert, shows an air heater and blower system incorporated into an air filter for an internal combustion engine carburetor. Heated air is blown into the filter and into the carburetor under control of a thermostat. The air filter has an opening and a deflector plate to deflect some of the heated air against the carburetor and bowl beneath the filter so as to accumulate heat around the carburetor under the filter casing thereby increasing the efficiency of the engine in cold weather or when the temperature drops below the setting of the thermostat. The '815 device takes little or no account of the modern trend away from engines with carburetors to fuel injected engines or improving power output from fuel injected engines subjected to heavy load. In addition, the '815 device usefulness is at least partially limited to cold climate areas where engines are required to make numerous cold starts.
U.S. Pat. No. 4,058,096, issued Nov. 15, 1977 to S. E. Brown, shows an apparatus and method for increasing the effective horsepower of an internal combustion engine. The apparatus consists of a cooling chamber mounted so as to be in communication with the air inlet portion of the carburetor of the engine. Ambient air is substantially cooled prior to introduction into the carburetor to quantitatively increase the weight of oxygen in the volume of air introduced into the carburetor. This makes it possible to feed an additional amount of fuel to the engine while maintaining the optimum air-fuel ratio, thereby effectively increasing the horsepower obtainable from the engine. While the '096 device addresses the need to increase effective horsepower output from an internal combustion engine, the device's usefulness in modern engines is severely limited given the modern trend towards fuel injected internal combustion engines.
U.S. Pat. No. 4,235,209, issued Nov. 25, 1980 to J. K. Ibbott, teaches introducing additional air into an air-fuel mixture flowing through an intake passage to combustion chambers of an internal combustion engine, together with a means for maintaining the pressure of the additional air or gas introduced into the intake passage to more than twice as high as the internal pressure in the intake passage. The '209 device further includes a multiple orifice unit comprising a plurality of annular-shaped plates stacked in layers wherein the gap between each pair of annular plates should be less than 0.35 mm. While the '209 device addresses the issue of improving the flow of air into the intake passage leading to the combustion chamber, the device works best with a carburetor, thereby decreasing the device's usefulness in modern engines given the modern trend towards fuel injected internal combustion engines.
U.S. Pat. No. 4,517,941, issued May 21, 1985 to N. Nakagawa, shows an air introduction system of a fuel injection type engine, including a main passage and a fuel injector for injecting fuel into the main passage. Assist air is introduced to the surrounding of a top nozzle portion of the fuel injector so that the assist air acts on the fuel injected from the injector. A sub-passage is connected to the main passage so as to supply the assist air. A main valve is disposed in the main passage and a subvalve is disposed in the sub-passage. The main and sub-passages are formed in a single throttle body. The assist air generated by the '941 device is supplied to a top nozzle portion of a fuel injector so as to improve the atomization of injected fuel. While the '941 device addresses the issue of improving engine efficiency in fuel injected internal combustion engines, the device does not addre

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Nozzle air injection system for a fuel-injected engine does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Nozzle air injection system for a fuel-injected engine, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Nozzle air injection system for a fuel-injected engine will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3337778

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.