Non-polar media for polynucleotide separations

Liquid purification or separation – Processes – Liquid/liquid solvent or colloidal extraction or diffusing...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C210S656000, C210S659000, C210S198200, C435S006120, C536S025400

Reexamination Certificate

active

06503397

ABSTRACT:

FIELD OF THE INVENTION
The present invention is directed to the separation of polynucleotides using a separation medium having non-polar surfaces, such as the surfaces of nonporous beads or surfaces of interstitial spaces within a molded monolith (e.g., a derivatized silica monolith), which surfaces are substantially free from contamination with multivalent cations. More specifically, the invention is directed to the chromatographic separation of both single stranded and double stranded polynucleotides by chromatography using a nonporous separation medium, where the medium is either organic or inorganic material which is coated with a polymer, or non-polar substituted polymer, and/or which has substantially all surface substrate groups substituted with a non-polar hydrocarbon or non-ionic substituted hydrocarbon.
BACKGROUND OF THE INVENTION
Separations of polynucleotides such as DNA have been traditionally performed using slab gel electrophoresis or capillary electrophoresis. However, liquid chromatographic separations of polynucleotides are becoming more important because of the ability to automate the analysis and to collect fractions after they have been separated. Therefore, columns for polynucleotide separation by liquid chromatography (LC) are becoming more important.
Silica-based columns are by far the most common LC columns. Of these, reverse phase silica-based columns are preferred because they have high separation efficiencies, are mechanically stable, and a variety of functional groups can be easily attached for a variety of column selectivities.
Although silica-based reverse phase column materials have performed adequately for separating single stranded DNA, these materials have not performed well for separating double stranded DNA. The peaks from double stranded DNA separations using silica-based materials are badly shaped or broad, or the double stranded DNA may not even elute. Separations can take up to several hours, or the resolution, peak symmetry, and sensitivity of the separation are poor.
High quality materials for DNA separations have been based on polymeric substrates, as disclosed in U.S. Pat. No. 5,585,236 to Bonn (1966). There exists a need for silica-based column packing material and other materials that are suitable for separation of double stranded DNA.
SUMMARY OF THE INVENTION
Accordingly, one object of the present invention is to provide a chromatographic method for separating polynucleotides with improved separation and efficiency. Another object is to provide improved non-polar separation media for the separation of polynucleotides.
These and other objects of the invention, which will become apparent from reading the following specification, have been achieved by the method of the present invention in which polynucleotides are separated using a nonporous separation medium such as beads or a molded monolith (e.g., a silica gel monolith), where the medium comprises either organic or inorganic material which is coated with a polymer, or non-polar substituted polymer, and/or which has substantially all surface substrate groups substituted with a non-polar hydrocarbon or non-ionic substituted hydrocarbon.
In one aspect, the invention is a method for separating a mixture of polynucleotides comprising applying a mixture of polynucleotides having up to 1500 base pairs to a separation medium, the separation surfaces of the medium coated with a hydrocarbon or non-polar hydrocarbon substituted polymer, or having substantially all polar groups reacted with a non-polar hydrocarbon or substituted hydrocarbon group, wherein said surfaces are non-polar; and eluting the polynucleotides. The separation medium can be enclosed in a column. Examples of non-polar surfaces include the surfaces of beads such as nonporous particles and the surfaces of intersitital spaces within a monolith (e.g., a silica gel monolith), which surfaces are coated with a hydrocarbon or non-polar substituted polymer or having substantially all surface substrate groups reacted with a non-polar hydrocarbon or substituted hydrocarbon group. In the preferred embodiment, precautions are taken during the production of the medium so that it is substantially free of multivalent cation contaminants and the medium is treated, for example by an acid wash treatment and/or treatment with multivalent cation binding agent, to substantially remove any residual surface metal contaminants. The preferred separation medium is characterized by having a DNA Separation Factor (defined hereinbelow) of at least 0.05. The preferred medium is characterized by having a Mutation Separation Factor (as defined hereinbelow) of at least 0.1. In a preferred embodiment, the separation is made by Matched Ion Polynucleotide Chromatography (MIPC, as defined hereinbelow). The elution step preferably uses a mobile phase containing a counterion agent and a water-soluble organic solvent. Examples of a suitable organic solvent include alcohol, nitrite, dimethylformamide, tetrahydrofuran, ester, ether, and mixtures of one or more thereof, e.g., methanol, ethanol, 2-propanol, 1-propanol, tetrahydrofuran, ethyl acetate, acetonitrile. The most preferred organic solvent is acetonitrile. The counterion agent is preferably selected from the group consisting of lower primary amine, lower secondary amine, lower tertiary amine, lower trialkyammonium salt, quaternary ammonium salt, and mixtures of one or more thereof. Non-limiting examples of counterion agents include octylammonium acetate, octyldimethylammonium acetate, decylammonium acetate, octadecylammonium acetate, pyridiniumammonium acetate, cyclohexylammonium acetate, diethylammonium acetate, propylethylammonium acetate, propyldiethylammonium acetate, butylethylammonium acetate, methylhexylammonium acetate, tetramethylammonium acetate, tetraethylammonium acetate, tetrapropylammonium acetate, tetrabutylammonium acetate, dimethydiethylammonium acetate, triethylammonium acetate, tripropylammonium acetate, tributylammonium acetate, and mixtures of any one or more of the above. The counterion agent includes an anion, e.g., acetate, carbonate, bicarbonate, phosphate, sulfate, nitrate, propionate, formate, chloride, perchlorate, or bromide. The most preferred counterion agent is triethylammonium acetate or triethylammonium hexafluoroisopropyl alcohol.
One embodiment of the invention provides a method for separating a mixture of polynucleotides, comprising applying a mixture of polynucleotides having up to 1500 base pairs to separation beads having non-polar surfaces, and eluting said mixture of polynucleotides. In a particular embodiment of the separation medium, the invention provides a method for separating a mixture of polynucleotides comprising applying a mixture of polynucleotides having up to 1500 base pairs through a separation column containing beads which are substantially free from contamination with multivalent cations and having an average diameter of 0.5 to 100 microns, and eluting the mixture of polynucleotides. In one embodiment, the beads comprise nonporous particles coated with a hydrocarbon or non-polar substituted polymer or having substantially all surface substrate groups reacted with a non-polar hydrocarbon or substituted hydrocarbon group. The beads preferably have an average diameter of about 1-5 microns. In the preferred embodiment, precautions are taken during the production of the beads so that they are substantially free of multivalent cation contaminants and the beads are treated, for example, by an acid wash treatment and/or treatment with multivalent cation binding agent, to remove any residual surface metal contaminants. The beads of the invention are characterized by having a DNA Separation Factor of at least 0.05. In a preferred embodiment, the beads are characterized by having a DNA Separation Factor of at least 0.5. Also in a preferred embodiment, the beads are characterized by having a Mutation Separation Factor of at least 0.1. In one embodiment, the beads are used in a capillary column to separate a mixture of polynucleotides by capillary electrochromat

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Non-polar media for polynucleotide separations does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Non-polar media for polynucleotide separations, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Non-polar media for polynucleotide separations will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3023621

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.