Semiconductor device manufacturing: process – Coating with electrically or thermally conductive material – To form ohmic contact to semiconductive material
Reexamination Certificate
2008-09-12
2010-06-01
Nhu, David (Department: 2895)
Semiconductor device manufacturing: process
Coating with electrically or thermally conductive material
To form ohmic contact to semiconductive material
C438S099000, C438S197000, C257SE21170, C257SE21051, C257SE21108, C257SE21304, C257SE21327, C257SE21563, C257SE21701
Reexamination Certificate
active
07727874
ABSTRACT:
Non-polar or semi-polar (Al, Ga, In)N substrates are fabricated by re-growth of (Al, Ga, In)N crystal on (Al, Ga, In)N seed crystals, wherein the size of the seed crystal expands or is increased in the lateral and vertical directions, resulting in larger sizes of non-polar and semi-polar substrates useful for optoelectronic and microelectronic devices. One or more non-polar or semi-polar substrates may be sliced from the re-grown crystal. The lateral growth rate may be greater than the vertical growth rate. The seed crystal may be a non-polar seed crystal. The seed crystal may have crystalline edges of equivalent crystallographic orientation.
REFERENCES:
patent: 6274518 (2001-08-01), Yuri et al.
patent: 6398867 (2002-06-01), D'Evelyn et al.
patent: 6413627 (2002-07-01), Motoki et al.
patent: 6440823 (2002-08-01), Vaudo et al.
patent: 6693021 (2004-02-01), Motoki et al.
patent: 6750121 (2004-06-01), Kim
patent: 7097707 (2006-08-01), Xu
patent: 2007/0138505 (2007-06-01), Preble et al.
patent: 2007/0141823 (2007-06-01), Preble et al.
patent: WO 2007/084783 (2007-07-01), None
patent: WO 2008/048303 (2008-04-01), None
Grzegory et al., “Recent Results in the Crystal Growth of GaN at High N2 Pressure”,MRS Internet Journal of Nitride Semiconductor Research,vol. 1, Article 20, 19 pgs (1996).
Ho et al., “Solid phase immiscibility in GaInN”,Appl. Phys. Lett.,69 (18), pp. 2701-2703 (Oct. 28, 1996).
Nakamura et al., “InGaN-Based Multi-Quantum-Well-Structure Laser Diodes”,Jpn. J. Appl. Phys.,vol. 35, pp. L74-L76 (1996).
Kapolnek et al., “Anisotropic epitaxial lateral growth in GaN selective area epitaxy”,Appl. Phys. Lett.,71 (9), pp. 1204-1206 (Sep. 1, 1997).
Takeuchi et al., “Quantum-Confined Stark Effect due to Piezoelectric Fields in GaInN Strained Quantum Wells”,Jpn. J. Appl. Phys.,vol. 36, pp. L382-L385 (1997).
Zheleva et al., “Dislocation density reduction via lateral epitaxy in selectively grown GaN structures”,Appl. Phys. Lett.71 (17), pp. 2472-2474 (Oct. 27, 1997).
Jahnen et al., “Pinholes, Dislocations and Strain Relaxation in InGaN”, MRS Internet Journal Nitride Semiconductor Research, 3, 39, pp. 1-10 (1998).
Bernardini et al., “Spontaneous versus Piezoelectric Polarization in III-V Nitrides—Conceptual Aspects and Practical Consequences”,Phys. Stat. Sol.(b) 216, pp. 391-398 (1999).
Northrup et al., “Indium-induced changes in GaN(0001) surface morphology”,Physical Review B,vol. 60, No. 12, pp. R8473-R8476 (Sep. 15, 1999).
Park et al., “Crystal-orientation effects on the piezoelectric field and electronic properties of strained wurtzite semiconductors”,Physical Review B,vol. 59, No. 7, pp. 4725-4737 (Feb. 15, 1999).
Waltereit et al., “Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes”,Nature,vol. 406, pp. 865-868 (Aug. 24, 2000).
Hiramatsu, “Epitaxial lateral overgrowth techniques used in group III nitride epitaxy”,J. Phys: Condens. Matter,13, pp. 6961-6975 (2001).
Mathis et al., “Modeling of threading dislocation reduction in growing GaN layers”,Journal of Crystal Growth,231, pp. 371-390 (2001).
Craven et al., “Structural characterization of nonpolar (1120)a-plane GaN thin films grown on (1102)r-plane sapphire”,Applied Physics Letters,vol. 81, No. 3, pp. 469-471 (Jul. 15, 2002).
Hsu et al., “Direct imaging of reverse-bias leakage through pure screw dislocations in GaN films grown by molecular beam epitaxy on GaN templates”,Applied Physics Letters,vol. 81, No. 1, pp. 79-81 (Jul. 1, 2002).
Karpov et al., “Dislocation effect on light emission efficiency in gallium nitride”,Applied Physics Letters,vol. 81, No. 25, pp. 4721-4723 (Dec. 16, 2002).
Ng, “Molecular-beam epitaxy of GaN/AlxGa1-xN multiple quantum wells on R-plane (1012) sapphire substrates”,Applied Physics Letters,vol. 80, No. 23, pp. 4369-4371 (Jun. 10, 2002).
Cho et al., “Carrier loss and luminescence degradation in green-light-emitting InGaN quantum wells with micron-scale indium clusters”,Applied Physics Letters,vol. 83, No. 13, pp. 2578-2580 (Sep. 29, 2003).
Craven et al., “Characterization ofa-Plane GaN/(Al,Ga)N Multiple quantum Wells Grown via Metalorganic Chemical Vapor Deposition”,Jpn. J. Appl. Phys.,vol. 42, pp. L235-L238 (2003).
Hanser et al., “Growth and Fabrication of 2 inch Free-standing GaN Substrates via the Boule Growth Method”,Mat. Res. Soc. Symp. Proc.,vol. 798, pp. Y2.1.1-Y2.1.6 (2003).
Haskell et al., “Structural and morphological characteristics of planar (1120)a-plane gallium nitride grown by hydride vapor phase epitaxy”,Applied Physics Letters,vol. 83, No. 8, pp. 1554-1556 (Aug. 25, 2003).
Haskell et al., “Defect reduction in (1120)a-plane gallium nitride via lateral epitaxial overgrowth by hydride vapor-phase epitaxy”,Applied Physics Letters,vol. 83, No. 4, pp. 644-646 (Jul. 28, 2003).
Simpkins et al., “Correlated scanning Kelvin probe and conductive atomic force microscopy studies of dislocations in gallium nitride”,Journal of Applied Physics,vol. 94, No. 3, pp. 1448-1453 (Aug. 1, 2003).
Wu et al., “Polarity determination of a-plane GaN onr-plane sapphire and its effects on lateral overgrowth and heteroepitaxy”,Journal of Applied Physics,vol. 94, No. 2, pp. 942-947 (Jul. 15, 2003).
Chakraborty et al., “Nonpolar InGaN-GaN emitters on reduced-defect lateral epitaxially overgrown a-plane GaN with drive-current-independent electroluminescence emission peak”,Applied Physics Letters,vol. 85, No. 22, pp. 5143-5145 (Nov. 29, 2004).
Chen et al., “Study on the stability of the high-brightness white LED”,Phys. Stat. Sol.(b), 241, No. 12, pp. 2664-2667 (2004).
Ito et al., “AlGaInN Violet Laser Diodes Grown on GaN Substrates with Low Aspect Ratio”,Japanese Journal of Applied Physics,vol. 43, No. 1, pp. 96-99 (2004).
Katz et al., “Persistent photocurrent and surface trapping in GaN Schottky ultraviolet detectors”,Applied Physics Letters,vol. 84, No. 20, pp. 4092-4094 (May 17, 2004).
Nakamura et al., “Ultrahigh-quality silicon carbide single crystals”,Nature,vol. 430, pp. 1009-1012 (Aug. 26, 2004).
Paskova et al., “Polar and nonpolar GaN grown by HVPE: Preferable substrates for nitride-based emitting devices”,Phys. Stat. Sol.(a), 201, No. 10, pp. 2265-2270 (2004).
Porowski et al., “Blue lasers on high pressure grown GaN single crystal substrates”,Europhysics News,vol. 35, No. 3, pp. 69-73 (May/Jun. 2004).
Wang et al., “Anisotropic structural characteristics of (1120) GaN templates and coalesced epitaxial lateral overgrown films deposited on (1012) sapphire”,Applied Physics Letters,vol. 84, No. 4, pp. 499-501 (Jan. 26, 2004).
Wetzel et al., “Analysis of the wavelength-power performance roll-off in green light emitting diodes”,Phys. Stat. Sol.(c), 1, No. 10, pp. 2421-2424 (2004).
Katz et al., “Characteristics of InAl1-xN—GaN High-Electron Mobility Field-Effect Transistor”,IEEE Transactions on Electron Devices,vol. 52, No. 2, pp. 146-150 (Feb. 2005).
Chakraborty et al., “Demonstration of Nonpolarm-Plane InGaN/GaN Light-Emitting Diodes on Free-Standingm-Plane GaN Substrates”,Japanese Journal of Applied Physics,vol. 44, No. 5, pp. L173-L175 (2005).
Haskell et al., “Microstructure and Enhanced Morphology of Planar Nonpolar m-Plane GaN Grown by Hydride Vapor Phase Epitaxy”,Journal of Electronic Materials,vol. 34, No. 4, pp. 357-360 (2005).
Haskell et al., “Defect reduction in (1100)m-plane gallium nitride via lateral epitaxial overgrowth by hydride vapor phase epitaxy”,Applied Physics Letters,86, pp. 111917-1 to 111917-3 (2005).
Paskova et al., “Properties of nonpolara-plane GaN films grown by HVPE with AlN buffers”,Journal of Crystal Growth,
Clites Terry Lee
Evans Keith Richard
Hanser Andrew David
Liu Lianghong
Preble Edward Alfred
Goodwin & Procter LLP
Kyma Technologies, Inc.
Nhu David
LandOfFree
Non-polar and semi-polar GaN substrates, devices, and... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Non-polar and semi-polar GaN substrates, devices, and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Non-polar and semi-polar GaN substrates, devices, and... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-4187247