Non-heat treated crankshaft

Metal treatment – Stock – Ferrous

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C148S904000, C420S104000

Reexamination Certificate

active

06712914

ABSTRACT:

This application claims priority under 35 U.S.C. § § 119 and/or 365 to the Japanese Patent Application Nos. 2002-191299 and 2003-130155 filed in Japan on Jun. 28, 2002 and May 8, 2003, respectively, the entire content of which is herein incorporated by reference.
FIELD OF THE INVENTION
The present invention relates to a non-heat treated crankshaft that uses “non-heat treated steel that exhibits, even when thermal refining after hot forging is omitted, excellent strength, excellent low temperature toughness and excellent wear resistance” and is preferable for use in general-purpose engines for such as lawn mowers, electric generators, snow blowers, pumps, and outboard motors.
BACKGROUND OF THE INVENTION
Machine structural steel parts, that have been so far used in automobiles and construction machinery, have been generally produced according to a method in which the steel for machine structural use (for instance, S48C and so on that are carbon steels for machine structural use defined in JIS G 4051) is formed into necessary part shapes by applying hot forging followed by applying quenching and tempering heat-treatment (so-called thermal refining) so as to endow necessary strength and toughness.
However, in recent years, in response to demands for cost reduction and lead-time reduction, development of “non-heat treated steels capable of being used as hot forged without applying thermal refining” have been forwarded, and now, the non-heat treated steels have rapidly expanded their applications and now focus on fields such as the automobiles and construction machinery.
As the demand for the non-heat treated steels spreads, the demands for higher performance non-heat treated steels and the cost reduction thereof, have become stronger and high-toughness non-heat treated steels, that can ensure excellent toughness even without applying the thermal refining and wear resistant non-heat treated steels that exhibit excellent wear resistance, even without applying surface hardening such as induction hardening and so on, have been proposed.
For instance, in Japanese laid-open patent application (JP Kokai) H08-120342, “Production of non-heat treated hot forged steel part having high strength and high toughness” is disclosed. According to the production method, a billet thereto, either a specified ratio of C, Mn, P and N is added followed by further adding one kind or more of V, Ti and Nb, or a specified ratio of C, Mn, Cr, V and B is added followed by further adding one kind or more of Ni, Cu and Mo is subjected to hot rolling, thereby steel whose austenite grain size number is controlled in a particular range is manufactured, thereafter the steel is subjected to hot forging controlled in a heating temperature, a temperature raising speed and a heating and holding period, and thereby non-heat treated hot forged parts, with high strength and high toughness, and having a microstructure mainly composing of a ferrite-pearlite, is produced.
Furthermore, in JP Kokai H10-277705, “Production of non-heat treated bar steel for high toughness hot forging” is disclosed. According to the production method, when a molten steel, whose carbon equivalent (Ceq.) is in the range of 0.7 to 1.30 and that contains a specified ratio of C, Si, Mn, Cr, V, Ti, N and Al, is continuously cast, a hot billet is formed under controlled cooling conditions, followed by heating and rolling under particular conditions, and thereby a bar steel is obtained.
Furthermore, in JP Kokai 2000-265242, “Non-heat treated steel for hot forging excellent in wear resistance” is proposed. In the steel, C is contained in a range of 0.40 to 0.70% (hereinafter “%” that shows a component ratio means “% by mass”), a specified ratio of Si, Mn, Cr, Al and N is contained, or as needs arise one kind or more of Pb, S, Te, Ca and Bi, that are machinability improvement elements, are further contained, a composition after the hot forging is a ferrite-pearlite microstructure, and an area ratio of pro-eutectoid ferrite is 10% or less.
Furthermore, in JP Kokai 2000-328193, “Non-refining steel for hot forging excellent in wear resistance” is disclosed. The hot forging non-heat treated steel contains C, Si and Mn at a specified ratio, or, as needs arise, further contains one kind or more of V, Nb and Ti, that are carbide- and nitride-forming elements, Cr that is a hardenability improvement element, Al that is an element that makes austenite grains finer and S, Pb, Zr, Ca, Te and Bi that are machinability improvement elements, and has a controlled amount of oxide inclusions, having a grain size larger than a particular value.
Working machines such as lawn mowers and electric generators, those are nowadays spreading into homes, are provided with a general-purpose engine called an “engine for working machine”. In such an engine for working machine, a structure in which a working member, such as a cutter blade for use in lawn mower, is directly fixed to the crankshaft of the operating engine is frequently adopted, and it is inevitable that the impact load of the working member is directly transmitted to the crankshaft.
For instance,
FIG. 1
is a schematic explanatory lateral sectional view showing an example of an internal structure of an engine in a lawn mower. A lawn mower cutter blade [
2
] as a working member is a solid body connected to a shaft end of the crankshaft [
1
] and the impact load to the lawn mower blade [
2
] is directly transmitted to the crankshaft [
1
].
Accordingly, in the crankshafts that are supplied for such applications, in addition to general demands, such as the strength and the wear resistance, the toughness in an application environment temperature region of the working machine, in particular very excellent low temperature toughness that can withstand the use even in cold regions, is demanded.
Accordingly, although many proposals relating to non-heat treated steels have been disclosed, it is generally known that as for machine structural steel parts, such as the crankshafts of engine for working machine that are required to be excellent in the low temperature toughness, in addition to the strength and the wear resistance, as identical as so far, the steel for machine structural use such as the S48C is hot forged, followed by applying the thermal refining due to quenching and tempering heat-treatment, and thereby predetermined low temperature toughness, wear resistance and strength are endowed.
The reason for the above is as follows:
As for the machine structural steel parts such as mentioned above, when existing non-heat treated steel is used as hot forged without thermal refining due to quenching and tempering heat-treatment, sufficiently satisfying low temperature toughness and wear resistance cannot be simultaneously obtained.
That is, since the low temperature toughness and the wear resistance of the steel are in a conflicting relationship, the non-heat treated steels that have been so far proposed are difficult to enhance both of the above properties simultaneously. For instance, all of the non-heat treated steels disclosed in the above-mentioned JP Kokai H08-120342, JP Kokai H10-277705, JP Kokai 2000-265242 or JP Kokai 2000-328193, in a state where the thermal refining is omitted, can neither ensure the low temperature toughness and the wear resistance needed to satisfy crankshafts of such as engines for working machine, nor sufficiently cope with demands for cost reduction and lead time reduction, due to the omission of the thermal refining.
SUMMARY OF THE INVENTION
The present invention intends to provide a non-heat treated crankshaft that can exhibit, even when thermal refining after hot forging is omitted, excellent strength, excellent wear resistance and excellent toughness.
The gist of the present invention is as follows:
(I) A non-heat treated crankshaft which comprises, in % by mass, C: 0.30 to 0.35%, Si: 0.40 to 0.80%, Mn: 1.00 to 2.00%, S: 0.040 to 0.080%, Cr: 0.10 to 0.30%, and V: 0.05 to 0.20%, with the balance being Fe and impurities, and of which the microstructure is a f

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Non-heat treated crankshaft does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Non-heat treated crankshaft, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Non-heat treated crankshaft will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3248524

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.