Network telephony interface systems between data network...

Multiplex communications – Pathfinding or routing – Combined circuit switching and packet switching

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C379S309000

Reexamination Certificate

active

06339593

ABSTRACT:

FIELD OF THE INVENTION
The present invention is in the field of telephony communication and pertains more particularly to methods and apparatus for seamless interfacing and integration of telephony on different networks.
BACKGROUND OF THE INVENTION
In the field of telephony communication, there have been many in technology over the years that have contributed to more efficient use of telephone communication within hosted call-center environments. Most of these improvements involve integrating the telephones and switching systems in such call centers with computer hardware and software adapted for, among other things, better routing of telephone calls, faster delivery of telephone calls and associated information, and improved service with regards to client satisfaction. Such computer-enhanced telephony is known in the art as computer-telephony integration (CTI).
Generally speaking, CTI implementations of various design and purpose are implemented both within individual call-centers and, in some cases, at the telephone network level. For example, processors running CTI software applications may be linked to telephone switches, service control points (SCP), and network entry points within a public or private telephone network. At the call-center level, CTI-enhanced processors, data servers, transaction servers, and the like, are linked to telephone switches and, in some cases, to similar CTI hardware at the network level, often by a dedicated digital link. CTI and other hardware within a call-center is commonly referred to as customer premises equipment (CPE). It is the CTI processor and application software is such centers that provides computer enhancement to a call center.
In a CTI-enhanced call center, telephones at agent stations are connected to a central telephony switching apparatus, such as an automatic call distributor (ACD) switch or a private branch exchange (PBX). The agent stations may also be equipped with computer terminals such as personal computer/video display unit's (PC/VDU's) so that agents manning such stations may have access to stored data as well as being linked to incoming callers by telephone equipment. Such stations may be interconnected through the PC/VDUs by a local area network (LAN). One or more data or transaction servers may also be connected to the LAN that interconnects agent stations. The LAN is, in turn, connected to the CTI processor, which is connected to the call switching apparatus of the call center.
When a call arrives at a call center, whether or not the call has been pre-processed at an SCP, typically at least the telephone number of the calling line is made available to the receiving switch at the call center by the network provider. This service is available by most networks as caller-ID information in one of several formats such as Automatic Number Identification (ANI). If the call center is computer-enhanced (CTI) the phone number of the calling party may be used to access additional information from a customer information system (CIS) database at a server on the network that connects the agent workstations. In this manner information pertinent to a call may be provided to an agent, often as a screen pop.
Proprietorship of CTI equipment both at individual call-centers and within a telephone network can vary widely. For example, a phone company may provide and lease CTI equipment to a service organization hosting a number of call-centers. A telecommunications company may provide and lease CTI equipment and capability to an organization hosting call centers. In many cases, a service organization (call center host) may obtain and implement it's own CTI capability and so on.
In recent years, advances in computer technology, telephony equipment, and infrastructure have provided many opportunities for improving telephone service in publicly-switched and private telephone intelligent networks. Similarly, development of a separate information and data network known as the Internet, together with advances in computer hardware and software have led to a new multi-media telephone system known in the art by several names. In this new systemology, telephone calls are simulated by multi-media computer equipment, and data, such as audio data, is transmitted over data networks as data packets. In this application the broad term used to describe such computer-simulated telephony is Data-Network Telephony (DTN).
For purposes of nomenclature and definition, the inventors wish to distinguish clearly between what might be called conventional telephony, which is the telephone service enjoyed by nearly all citizens through local telephone companies and several long-distance telephone network providers, and what has been described herein as computer-simulated telephony or data-network telephony. The conventional system is familiar to nearly all, and is often referred to in the art as Plain Old Telephony Service (POTS). This designation is more strictly applied in the language of the art, however, to analog-only systems, and might be confusing to many if used in the context of this specification. The computer-simulated, or DNT systems are familiar to those who use and understand computer systems. Perhaps the best example of DNT is telephone service provided over the Internet, which will be referred to herein as Internet Protocol Network Telephony (IPNT), by far the most extensive, but still a subset of DNT.
Both systems use signals transmitted over network links. In fact, connection to data networks for DNT such as IPNT is typically accomplished over local telephone lines, used to reach such as an Internet Service Provider (ISP). The definitive difference is that the older, more conventional telephony may be considered to be connection-oriented, switched telephony. In these systems, calls are placed and connected (switched) to occupy a specific, dedicated path, and the connection path is maintained over the time of the call. Bandwidth is thus assured. Other calls and data do not share a connected channel path in such a dedicated connection system, except in the instance of conferenced calls, wherein the conferenced calls are still dedicated to the established path. In a typical DNT system, on the other hand, the system is not dedicated connection oriented. That is, data, including audio data, is prepared, sent, and received as data packets. The data packets share network links, and may travel by varied and variable paths. There is thus no generally dedicated bandwidth, unless special systems, such as RSVP systems known in the art, are used for guaranteeing bandwidth during a call. For these reasons, the dedicated-connection, switched systems (non-DNT) are referred to in this specification as COST systems, meaning Connection Oriented/Switched Telephony.
Under ideal operating circumstances a DNT network, such as the Internet, has all of the audio quality of conventional public and private COST networks, and many advantages accruing from the aspect of direct computer-to-computer linking. DNT systems are also typically implemented with equipment less extensive and expensive than those necessary for COST systems. However, DNT calls must share the bandwidth available on the network in which they are traveling. As a result, real-time voice communication may at times suffer dropout and delay. This is at least partially due to packet loss experienced during periods of less than needed bandwidth which may prevail under certain conditions such as congestion during peak periods of use, and so on.
Recent improvements to available technologies associated with the transmission and reception of data packets during real-time DNT communication have made it possible to successfully add DNT, principally IPNT capabilities to existing CTI call centers. Such improvements, as described herein and known to the inventor, include methods for guaranteeing and verifying available bandwidth or quality of service (QoS) for a transaction, improved mechanisms for organizing, coding, compressing, and carrying data more efficiently using less bandwidth, and methods and app

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Network telephony interface systems between data network... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Network telephony interface systems between data network..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Network telephony interface systems between data network... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2871827

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.