Data processing: measuring – calibrating – or testing – Measurement system in a specific environment – Biological or biochemical
Reexamination Certificate
2001-02-15
2002-11-19
Hoff, Marc S. (Department: 2857)
Data processing: measuring, calibrating, or testing
Measurement system in a specific environment
Biological or biochemical
C702S188000
Reexamination Certificate
active
06484104
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention is directed to an arrangement for reading and evaluating data from a biosensor array (biochip) for medical diagnostic purposes.
2. Description of the Prior Art
It is well-known that the presence of certain biomolecules, such as a particular protein, antibody or DNA fragment, in the human body is correlated with certain diseases, and therefor it is also known to make a medical diagnosis based on identification of the presence of these biomolecules. If the presence of a certain molecular species at a certain concentration level in the human body has been shown to be correlated with the presence or absence of a particular pathology (disease), the relevant biomolecule is referred to as a diagnostic marker for the pathology. For most diseases, the pathological reaction chain is very complex, and involves a large number of different biomolecules which, in turn, also may play a role in the pathophysiology of another disease. Therefore, a single marker is not always sufficient in order to unequivocally diagnose a particular disease. Often, it is only through an evaluation protocol involving several combined markers that a diagnosis can be made. For example, if a concentration is high for a first marker, low for a second marker, and a third marker is absent, then a particular disease can be diagnosed. The measurement of single markers or multiple markers is referred to as an in vitro diagnostic test. The development of markers for such diagnostic tests is very cost intensive and time intensive, and the development of expert rules for such tests is even more cost intensive and time intensive.
A new generation of biosensor arrays has been developed and is about to enter widespread use in the medical diagnostic market. Instead of conducting multiple measurements of multiple markers with a number of different devices, or using highly sophisticated robots in a centralized diagnostic laboratory, the new generation of biosensor arrays are able to measure, in a fully automated manner, a large number of markers simultaneously, up to thousands of different markers on the same chip, without a need for further human interaction. Moreover, such measurement are made outside of a formal laboratory environment. Almost all known types of biomolecular markers (e.g. DNA fragments, proteins, enzymes, antibodies, etc.) can be measured simultaneously on the same chip. These biochips are particularly suited for immediately conducting the diagnostic test at a point of care (POC) site, such as a hospital bedside, a physician's office, or even at the patient's home. Such biochips also, of course, can be used in a professional centralized laboratory.
In such multi-marker biochips, the measurement procedure also becomes increasingly complex. Before starting the actual measurement, it is often necessary to conduct a sample preparation cycle, involving a chemical reaction, filtering, etc. During the measurement itself, certain boundary conditions, such as a stable temperature or a temperature time gradient or a certain bias potential at an electrode might be necessary in order to optimize or standardize the measurement result. The complete time sequence of all settings (chemical, electrical, mechanical) is referred to as a measurement protocol. A measurement protocol, moreover, can change, and likely will change, with every configuration of markers on a biochip, and may even be optimized during the life cycle of a given biochip configuration, as new and improved knowledge becomes available in the field. This requires fast and flexible ways to update measurement protocols at measurement devices in the field, i.e., testing and measurement devices located at point of care sites.
Since the number of pathologies or diseases which may have to be tested for at a point of care site is relatively large, it is very difficult for a point of care administrator to keep track of all of the different measurement protocols which are respectively necessary for these different diseases and pathologies, as well as to be sure that each protocol is up-to-date and/or matched to the version of the biochip which is being employed. For example, even though a particular measurement protocol may have been updated, the particular biochip being employed for a test, if it has been an inventory for a certain amount of time, may not be compatible with the most current protocol, but may require an “out-of-date” (but still approved) measurement protocol.
Because of the complexity and number of such in vitro tests, conventionally the majority of in vitro tests are conducted at centralized laboratories, with evaluations being made by experience laboratory personnel.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide a network for evaluating medical data which allows a point of care test device to receive a biochip with a patient's sample and to obtain the relevant diagnostic data, without the necessity of resorting to the use of a centralized laboratory.
The above object is achieved in accordance with the principles of the present invention in a network and a method wherein a biochip having a patient's sample is identified with a biochip identifier, such as a bar code, which includes the relevant information as to the type of pathology or disease which is to be tested using the biochip's sample and/or an identification of the version of the biochip (in terms of successively developed modifications). The biochip is inserted in a point of care test device, which is in communication via a data link with a remote server. At the remote server, a number of measurement protocols are stored, either in a memory at the server or a memory accessible by the server. The various measurement protocols are not only different protocols for different diseases and pathologies, but are also different updates of the same protocol for the same disease or pathology. Based on the biochip identifier which is transmitted by the point of care test device to the remote server, the appropriate measurement protocol is selected and is transmitted back to the point of care test device via the data link.
The point of care test device then conducts the test on the sample in the biochip using the transmitted protocol, to obtain test result data.
Two options are available for evaluating the test result data. The point of care test device itself may contain sufficient software in order to evaluate the test result data at the point of care site. Alternatively, the test result data can be transmitted via the data link to the remote server, and the remote server can be provided with an evaluation unit, such as an expert evaluation system, which evaluates the test result data and transmits the diagnostic result back to the point of care test device via the data link.
REFERENCES:
patent: 5594663 (1997-01-01), Messaros et al.
patent: 6142681 (2000-11-01), Gulati
patent: 6175752 (2001-01-01), Say et al.
patent: 6366871 (2002-04-01), Geva
Abraham-Fuchs Klaus
Gallahue Kieran
Gosch Greg
Hengerer Arne
O'Conell James P.
LandOfFree
Network for evaluating data obtained in a biochip... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Network for evaluating data obtained in a biochip..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Network for evaluating data obtained in a biochip... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2947491