Negative-working thermal imaging member and methods of...

Radiation imagery chemistry: process – composition – or product th – Imaging affecting physical property of radiation sensitive... – Radiation sensitive composition or product or process of making

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C430S281100, C430S286100, C430S287100, C430S302000, C430S348000, C430S434000, C430S944000, C430S945000, C430S964000

Reexamination Certificate

active

06551757

ABSTRACT:

FIELD OF THE INVENTION
This invention relates in general to negative-working thermal imaging members (particularly lithographic printing plates). The invention also relates to a method of imaging such imaging members, and to a method of printing.
BACKGROUND OF THE INVENTION
The art of lithographic printing is based upon the immiscibility of oil and water, wherein an oily material or ink is preferentially retained by an imaged area and the water or fountain solution is preferentially retained by the non-imaged areas. When a suitably prepared surface is moistened with water and ink is applied, the background or non-imaged areas retain the water and repel the ink while the imaged areas accept the ink and repel the water. The ink is then transferred to the surface of a suitable substrate, such as cloth, paper or metal, thereby reproducing the image.
Very common lithographic printing plates include a metal or polymer support having thereon an imaging layer sensitive to visible or UV light. Both positive- and negative-working printing plates can be prepared in this fashion. Upon exposure to a patterned light image, and perhaps post-exposure heating, either imaged or non-imaged areas are removed using wet processing chemistries.
“Direct-write” imaging avoids the need for patterned light imaging and chemical processing. Direct-write using an infrared radiation laser is a thermally driven process and is more desirable because the laser heats only a small region at a time. Moreover, computer control allows for high-resolution images to be generated at high speed since the images can be produced directly on the imaging member surface, pixel by pixel. The conventional chemical processing steps may also be eliminated in such imaging techniques.
Examples of thermally sensitive printing plates are described in U.S. Pat. No. 5,372,915 (Haley et al.). They include an imaging layer comprising a mixture of dissolvable polymers and an infrared radiation absorbing compound. While these plates can be imaged using lasers and digital information, they still require wet processing using alkaline developer solutions.
It has been recognized that a lithographic printing plate could be created by ablating an IR absorbing layer. For example, Canadian 1,050,805 (Eames) discloses a dry planographic printing plate comprising an ink receptive substrate, an overlying silicone rubber layer, and an interposed layer comprised of laser energy absorbing particles (such as carbon particles) in a self-oxidizing binder (such as nitrocellulose). Such plates were exposed to focused near IR radiation with a Nd
++
YAG laser. The absorbing layer converted the infrared energy to heat thus partially loosening, vaporizing or ablating the absorber layer and the overlying silicone rubber. Similar plates are described in Research Disclosure 19201, 1980 as having vacuum-evaporated metal layers to absorb laser radiation in order to facilitate the removal of a silicone rubber overcoated layer. These plates were developed by wetting with hexane and rubbing. Other publications describing ablatable printing plates include U.S. Pat. No. 5,385,092 (Lewis et al.), U.S. Pat. No. 5,339,737 (Lewis et al.), U.S. Pat. No. 5,353,705 (Lewis et al.), U.S. Pat. No. Reissue 35,512 (Nowak et al.), and U.S. Pat. No. 5,378,580 (Leenders).
The noted printing plates have a number of disadvantages. The process of ablation creates debris and vaporized materials that must be collected. The laser power required for ablation can be considerably high, and the components of such printing plates may be expensive, difficult to coat, or unacceptable for resulting printing quality. Such plates generally require at least two coated layers on a support.
Thermal or laser mass transfer is another method of preparing processless lithographic printing plates. Such methods are described for example in U.S. Pat. No. 5,460,918 (Ali et al.) wherein a hydrophobic image is transferred from a donor sheet to a microporous hydrophilic crosslinked silicated surface of the receiver sheet. U.S. Pat. No. 3,964,389 (Peterson) describes a process of laser transfer of an image from a donor material to a receiver material requiring a high temperature post-heating step.
Still another method of imaging is the use of materials comprising microencapsulated hydrophobic materials as described for example in U.S. Pat. No. 5,569,573 (Takahashi et al.). Upon thermal imaging, the microcapsules rupture in an imagewise fashion to provide an ink-receptive image.
Thermally switchable polymers have been described for use as imaging materials in printing plates. By “switchable” is meant that the polymer is rendered from hydrophobic to relatively more hydrophilic or, conversely from hydrophilic to relatively more hydrophobic, upon exposure to heat. U.S. Pat. No. 4,034,183 (Uhlig) describes the use of high powered lasers to convert hydrophilic surface layers to hydrophobic surfaces. A similar process is described for converting polyamic acids into polyimides through a transparency mask in U.S. Pat. No. 4,081,572 (Pacansky). The use of high-powered lasers is undesirable in the industry because of their high electrical power requirements and because of their need for cooling and frequent maintenance.
U.S. Pat. No. 4,634,659 (Esumi et al.) describes imagewise irradiating hydrophobic polymer coatings to render exposed regions more hydrophilic in nature. While this concept was one of the early applications of converting surface characteristics in printing plates, it has the disadvantages of requiring long UV light exposure times (up to 60 minutes), and the plate's use is in a positive-working mode only.
U.S. Pat. No. 4,405,705 (Etoh et al.) and U.S. Pat. No. 4,548,893 (Lee et al.) describe amine-containing polymers for photosensitive materials used in non-thermal processes. Thermal processes using polyamic acids and vinyl polymers with pendant quaternary ammonium groups are described in U.S. Pat. No. 4,693,958 (Schwartz et al.). U.S. Pat. No. 5,512,418 (Ma) describes the use of polymers having cationic quaternary ammonium groups that are heat-sensitive.
WO 92/09934 (Vogel et al.) describes photosensitive compositions containing a photoacid generator and a polymer with acid labile tetrahydropyranyl or activated ester groups. However, imaging of these compositions converts the imaged areas from hydrophobic to hydrophilic in nature.
EP-A 0 652 483 (Ellis et al.) describes direct-write lithographic printing plates imageable using IR lasers that do not require wet processing. These plates comprise an imaging layer that becomes more hydrophilic upon imagewise exposure to heat. This coating contains a polymer having pendant groups (such as t-alkyl carboxylates) that are capable of reacting under heat or acid to form more polar, hydrophilic groups.
Additional imaging materials described in, for example, U.S. Pat. No. 6,030,750 (Vermeersch et al.) utilize thermoplastic polymer particles that are believed to be capable of coalescing under the influence of heat.
U.S. Pat. No. 5,605,780 (Burberry et al.) describes printing plates that are imaged by an ablation method whereby exposed areas are removed from the heat generated by a focused high-intensity laser beam. The imaging layer is composed of an IR-absorbing compound in a film-forming cyanoacrylate polymer binder. In order for thermal ablation to be successful in such printing plates, the imaging later thickness is generally less than 0.1 &mgr;m and the weight ratio of IR-absorbing compound to the cyanoacrylate polymer is at least 1:1. Thus, the imaging layers are quite thin and have a significant amount of IR-absorbing compound.
There is a need in the graphic arts industry for a means to provide processless, direct-write, negative-working lithographic imaging members that can be imaged without ablation, or the other problems noted above, to provide high sensitivity, high imaging speed, long shelf life, and long press life.
SUMMARY OF THE INVENTION
The problems noted above are overcome with a negative-working imaging member comprising a support having

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Negative-working thermal imaging member and methods of... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Negative-working thermal imaging member and methods of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Negative-working thermal imaging member and methods of... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3047846

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.