Negative differential resistance (NDR) elements and memory...

Static information storage and retrieval – Systems using particular element – Negative resistance

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C365S159000, C365S177000

Reexamination Certificate

active

06795337

ABSTRACT:

FIELD OF THE INVENTION
This invention generally relates to semiconductor memory devices and technology, and in particular to two terminal NDR elements and static random access memory (SRAM) devices that utilize such elements.
BACKGROUND OF THE INVENTION
The rapid growth of the semiconductor industry over the past three decades has largely been enabled by continual advancements in manufacturing technology which have allowed the size of the transistor, the basic building block in integrated circuits (ICs), to be steadily reduced with each new generation of technology. As the transistor size is scaled down, the chip area required for a given circuit is reduced, so that more chips can be manufactured on a single silicon wafer substrate, resulting in lower manufacturing cost per chip; circuit operation speed also improves, because of reduced capacitance and higher transistor current density. State-of-the-art fabrication facilities presently manufacture ICs with minimum transistor lithographically defined feature size smaller than 100 nm, so that microprocessor products with transistor counts approaching 100 million transistors per chip can be manufactured cost-effectively. High-density semiconductor memory devices have already reached the gigabit scale, led by dynamic random access memory (DRAM) technology. The DRAM memory cell consists of a single pass transistor and a capacitor (1T/1C), wherein information is stored in the form of charge on the capacitor. Although the DRAM cell provides the most compact layout (with area ranging between 4F
2
and 8F
2
, where F is the minimum feature size), it requires frequent refreshing (typically on the order of once per millisecond) because the charge on the capacitor leaks away at a rate of approximately 10
−15
Amperes per cell. This problem is exacerbated by technology scaling, because the transistor leakage current increases with decreasing channel length, and also because a reduction in cell capacitance results in a smaller number of stored charge carriers, so that more frequent refreshing is necessary. Thus, scaling of DRAM technology to much higher densities presents significant technological challenges.
Static RAM (SRAM) does not require refreshing and is generally faster than DRAM (approaching 1 ns access times as compared to tens of ns for DRAM). However, the SRAM cell is more complex, requiring either four n-channel metal-oxide-semiconductor field-effect transistors (MOSFETs) and two p-channel MOSFETs, or four n-channel MOSFETs and two polycrystalline-silicon (poly-Si) load resistors, resulting in significantly larger cell size (typically greater than >120 F
2
). Innovations which provide significant reductions in SRAM cell size while allowing the SRAM cell to retain its favorable operating characteristics are therefore highly desirable.
Negative differential resistance (NDR) devices have previously been proposed for compact static memory applications. E. Goto in
IRE Trans. Electronic Computers
, March 1960, p. 25 disclosed an SRAM cell consisting of two resonant tunneling diodes (RTDs) and a pass transistor. For a variety of NDR devices including RTDs, the current first increases with increasing applied voltage, reaching a peak value, then decreases with increasing applied voltage over a range of applied voltages, exhibiting negative differential resistance over this range of applied voltages and reaching a minimum (“valley”) value. At yet higher applied voltages, the current again increases with increasing applied voltage. Thus, the current-vs.-voltage characteristic is shaped like the letter “N”. A key figure of merit for NDR devices is the ratio of the peak current to the valley current (PVCR). The higher the value of the PVCR, the more useful the NDR device is for variety of circuit applications. The PVCR of RTDs is generally not high enough to make it practical for low-power SRAM application, because in order for the RTDs in a Goto cell to have sufficient current drive, the valley current is too large, causing large static power dissipation. In addition, RTDs require specialized fabrication process sequences so that the complexity of an integrated RTD/MOSFET SRAM process would be substantially higher than that of a conventional complementary MOS (CMOS) SRAM process, resulting in higher manufacturing cost.
Accordingly, there exists a significant need for NDR devices with very high (>10
6
) PVCR which can be easily integrated into a conventional CMOS technology, for compact, low-power, low-cost SRAM.
A new type of SRAM device to achieve such functionality using Negative Differential Resistance Field Effect Transistors (NDR FETs) is described in detail in a patent application Ser. No. 10/029,077 filed Dec. 21, 2001 by T J King and assigned to the present assignee, and published on May 9, 2002 as Publication No. 2002/0054502. The NDR FET structure, operation and method of making the same are discussed in detail in patent application Ser. No. 09/603,101 filed Jun. 22, 2000 by King et al., which is also assigned to the present assignee. Such details are also disclosed in a corresponding PCT application PCT/US01/19825 which was published as publication no. WO 01/99153 on Dec. 27, 2001. The above materials are hereby incorporated by reference.
Additional embodiments of such device are clearly advantageous for use in memory applications, particularly embedded memory.
SUMMARY OF THE INVENTION
An object of the present invention is to provide an improved type of negative differential resistance (NDR) element to complement the types of devices available for providing a negative differential resistance characteristic in a silicon based environment;
A further object of the present invention is to provide a static random access memory (SRAM) cell which utilizes such types of new NDR elements.
For achieving these objects, one aspect of the invention provides a two terminal negative differential resistance (NDR) semiconductor device formed on a silicon-based substrate. The two terminal NDR device includes a first doped region; a second doped region; and a gate adapted for receiving a gate control signal. The gate includes a gate electrode coupled to the first doped region. A controllable conductance region coupled between the first and second doped regions, said controllable conductance region being configured such that when a first bias potential is applied to the gate electrode and a second bias potential is applied between the first doped region and second doped region, energetic carriers are generated. A portion of these energetic carriers are trapped by a dielectric layer located proximate to the gate and forming an interface with the controllable conductance region. The device is configured to trap a number of the energetic carriers at or near the interface preferably using low energy level traps. Accordingly, in such device, a number of energetic carriers that can be trapped in the dielectric layer can be controlled by adjusting the first bias potential and/or the second bias potential so that the two terminal NDR semiconductor device operates as a silicon-based NDR device.
In a preferred embodiment, the two terminal NDR semiconductor device is an NDR-capable field effect transistor (FET) which has a negative voltage threshold, and whose gate is coupled to a drain region formed in the silicon substrate. In this manner, the two terminal NDR semiconductor device operates essentially as an NDR diode.
Again, in a preferred embodiment, the controllable conductance region is a channel associated with the NDR capable FET, and which includes a first dopant that is of opposite type to a second dopant used in said first doped region and said second doped region. The charge trapping sites are also preferably characterized by an energy level that is above the conduction band edge of said channel.
In one exemplary application, the two terminal NDR semiconductor device is used as a load element within a memory cell. In such case (and in other applications) the device is coupled to a three terminal NDR semiconductor device on a common si

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Negative differential resistance (NDR) elements and memory... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Negative differential resistance (NDR) elements and memory..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Negative differential resistance (NDR) elements and memory... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3211049

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.