Nanoparticle nickel zinc ferrites synthesized using reverse...

Compositions – Magnetic – Iron-oxygen compound containing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C423S594300, C423S594100, C977S811000, C977S840000

Reexamination Certificate

active

07547400

ABSTRACT:
A method for making monodispersed magnetic nanoparticles of nickel zinc ferrite (NZFO) at room temperature by mixing together two micelle solutions. The first micelle solution comprises zinc, nickel, and iron metal salts; a surfactant; and a hydrocarbon. The second micelle solution comprises an aqueous hydroxide, a surfactant, and a hydrocarbon. After mixing the two micelle solutions, the ferrite precipitates.

REFERENCES:
patent: 4097392 (1978-06-01), Goldman et al.
patent: 5872534 (1999-02-01), Mayer
Yener et al, “Synthesis of Pure and Manganese-, Nicel-, and Zinc-Doped Ferrite Particles in Water-in-Oil Microemulsions”, J. Am. Ceram. Soc., 84 [9], pp. 1987-1995, Sep. 2001.
Gubbala et al, “Magnetic properties of nanocrsytalline Ni-Zn, Zn-Mn, and Ni-Mn ferrites sythesized by reverse micelle technique”, Physica B, 384, pp. 317-328, available online Feb. 13, 2004.
Uskokovic et al, “Synthesis of nanocrystalline Nickel-Zinc Ferrites Within Reverse Micelles”, MTAEC (materiali in technologije) 9, 37 (3-4), 129-131, 2003.
MDS sheet for NP4, tergitol NP-4.
MDS sheet for NP7, tergitol NP-7.
Aluquerque et al, “Nanosized poqders of NiZn ferrite: Synthesis, structure, and magnetism”, Jour. Appl. Phys. vol. 87, No. 9, May 1, 2000, pp. 4352-4357.
Albuquerque, et al., Nanosized Powders of NiZn ferrite, J. Appl. Phyics, 87, 4352, 2000.
Takanori Tsutaoka, Frequency dispersion of complex permeability in Mn-Zn and Ni-Zn spinel ferrites and their composite materials, J. Appl. Phys., 93 (5) 2789-2796 (2003).
Dias et al., Hydrothermal synthesis and sintering of nickel and manganese-zinc ferrites, J. Mater. Res., 12 (12) 3278-3285 (1997).
Albertina Cabanas and Martyn Poliakoff, The continuous hydrothermal synthesis of nano-particulate ferrites in near critical and supercritical water, J. Mater. Chem., 11, 1408-1416 (2001).
Y. Tamura, T. Sasao, M. Abe and T. Itoh, Ferrite Formation in Aqueous Solution at 100-200° C, Journal of Colloid and Interface Science, 136, 242-248 (1990).
A. Dias, R. L. Moreira, Chemical, mechanical and dielectric properties after sintering of hydrothern1al nickel-zinc ferrites, Mater. Lett., 39, 69-76 (1999).
Hyun J. Song, Jae H. Oh, Seung C. Choi and Jae C. Lee, Preparation and Characterization of Ni Ferrite Powders by Urea Decomposition, Physica Status Solidi A, 189 (3) 849-852 (2002).
P. C. Fannin, S. W. Charles, J.L. Dormann, Field dependence of the dynamic properties of colloidal suspensions of Mn0.66ZN0.34Fe2O4and Ni0.5Zn0.5Fe2O4particles, Journal of Magnetism and Magnetic Materials, 201, 98-101 (1999).
P. S. Anil Kumar, J. J. Shrotri, S. D. Kulkarni, C. E. Deshpande, S. K. Date, Low temperature synthesis of Ni0.8Zn0.2Fe2O4powder and its Characterization, Mater. Lett., 27, 293-296 (1996).
J. S. Jiang, L. Gao, X. L. Yang, J. K. Guo, and H. L. Shen, Nanocrystalline NiZn ferrite synthesized by high energy ball milling, J. Mater. Sci. Lett. 18, 1781-1783 (1999).
M. P. Pileni, Fabrication and Properties of Nanosized Material Made by Using Colloidal Assemblies as Templates, Crystal Research and Technology, 33, 1155-1186 (1998).
Charles J. O'Connor, Candace T. Seip, Everett E. Carpenter, Sichu Li, and Vijay T. John, Synthesis and Reactivity of Nanophase Ferrites in Reverse Micellar Solutions, Nanostructured Materials, 12, 65-70 (1999).
J. Rivas, M. A. Lopez-Quintela, J. A. Lopez-Perez, L. Liz, R. J. Duro, First steps towards tailoring fine and ultrafine iron particles using microemulsions, IEEE Transactions on Magnetics, 29 (6) 2655-2657 (1993).
Markus Lade, Holger Mays, Jorg Schmidt, Regine Willumeit, Reinhard Schomacker, On the nanoparticle synthesis in microen1ulsions: detailed characterization of an applied reaction mixture, Colloids and Surfaces A: Physicochemical and Engineering Aspects 163, 3-15 (2000).
Everett E. Carpenter, Candace T. Seip, and Charles J. O'Connor, Magnetism of nanophase metal and metal alloy particles formed in ordered phases, J. Appl. Phys., 85 (8) 5184-5186 (1999).
Doruk O. Yener and Herbert Giesche, Synthesis of Pure and Manganese-, Nickel-, and Zinc-Doped Ferrite Particles in Water-in-Oil MicroemulsionsJ. Am. Ceram. Soc., 84 (9) 1987-95 (2001).
Uskokovic et al, Synthesis of Nanocrystalline Nickel-Zinc Ferrites Within Reverse Micelles, Materiali in Tehnologije 37 (2003) 3-4, p. 129-131.
Gubbala, et al, Magnetic properties of nanocrystalline Ni-Zn, Zn-Mn, and Ni-Mn ferrites synthesized by reverse micelle technique, Physica B 348 (2004) 317-328.
Morrison, et al., Atomic Engineering of Mixed Ferrite and Core-Shell Nanoparticles, Journal of Nanoscience and Nanotechnology, vol. 5, 1323-1344, 2005.
Morrison, et al, Magnetic and structural properties of nickel zinc ferrite nanoparticles synthesized at room temperature, Journal of Applied Physics vol. 95, No. II, Jun. 1, 2004, p. 6392-6395.
Tamaura, et al., Ferrite Formation in Aqueous Solution at 100-200° C, Jnl. Colloid and Interface Sci., vol. 136, No. 1, p. 242 (1989).

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Nanoparticle nickel zinc ferrites synthesized using reverse... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Nanoparticle nickel zinc ferrites synthesized using reverse..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Nanoparticle nickel zinc ferrites synthesized using reverse... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-4146422

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.