Nanocomposite for fuel cell bipolar plate

Chemistry: electrical current producing apparatus – product – and – With pressure equalizing means for liquid immersion operation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C423S414000, C252S502000

Reexamination Certificate

active

06572997

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention generally relates to fuel cells and, more particularly, to an improved bipolar plate and method of making the same that is corrosion resistant, has good electrical conductivity, and is low in manufacturing cost.
A fuel cell is a galvanic conversion device that electrochemically reacts a fuel with an oxidant within catalytic confines to generate a direct current. A fuel cell includes a cathode electrode that defines a passageway for the oxidant and an anode electrode that defines a passageway for the fuel. A solid electrolyte is sandwiched between and separates the cathode from the anode. An individual electrochemical cell usually generates a relatively small voltage. Thus, to achieve higher voltages that are useful, the individual electrochemical cells are connected together in series to form a stack. Electrical connection between cells is achieved by the use of an electrical interconnect between the cathode and anode of adjacent cells. Also typically included in the stack are ducts or manifolding to conduct the fuel and oxidant into and out of the stack.
The fuel and oxidant fluids are usually gases and are continuously passed through separate passageways. Electrochemical conversion occurs at or near the three-phase boundary of the gas, the electrodes (cathode and anode) and electrolyte. The fuel is electrochemically reacted with the oxidant to produce a DC electrical output. The anode or fuel electrode enhances the rate at which electrochemical reactions occur on the fuel side. The cathode or oxidant electrode functions similarly on the oxidant side.
One type of fuel cell is a proton exchange membrane (“PEM”) cell. In such a fuel cell, a proton exchange membrane (“PEM”) is located between two electrodes (cathode electrode and anode electrode) to form a sandwich-like assembly, which is often referred to as a “membrane-electrode-assembly.” The two electrodes are each comprised of a thin sheet of porous material that is permeable to liquid and gas. The two electrodes are situated on either side of a proton exchange membrane such that one surface of each electrode abuts a catalyst layer.
The remaining surface of each electrode respectively abuts a nonporous, gas impermeable, electrically conductive plate. The electrically conductive plate has channels or flow fields for gas flow, and serves as a manifold to distribute fuel gas across the abutting electrode. The two electrically conductive plates are electrically connected together by an external circuit.
Hydrogen fuel gas flows through the grooves in the electrically conductive plate on the anode electrode side, diffuses through the anode electrode, and reacts with the catalyst to produce free electrons and H
+
ions. The electrons flow to the cathode electrode by means of the external circuit, and the H
+
ions migrate through the PEM to the cathode electrode. Oxygen gas flows through the grooves of the electrically conductive plate on the cathode electrode side and reacts with the H
+
ions and free electrons to form liquid water.
In a fuel cell stack, the electrically conductive plates are often referred to as bipolar plates because one face contacts the cathode electrode while the opposite face contacts the anode electrode. Each bipolar plate therefore conducts electrical current from the anode of one cell to the cathode of the adjacent cell in the stack. The electrical current is collected by the two plates at the ends of a stack, known as end plates or current collectors. A stack-design dependent number of thicker plates comprising channels in the plate thickness for a coolant fluid are used to control the temperature of the stack to about 85 C.
However, in the PEM fuel cell environment, the bipolar plates are subject to corrosion due to gases formed by reaction and water. Therefore, in addition to having sufficient electrical conductivity, the bipolar plates have to be corrosion resistant so as to maintain adequate conductivity and maintain dimensional stability over the operational life of the fuel cell.
Graphite bipolar plates have exhibited qualities of sufficient conductivity and corrosion resistance. Yet, graphite plates typically require several manufacturing steps, such as densification with a phenolic resin, followed by high temperature carbonization. Further, graphite bipolar plates, in general, are relatively brittle, particularly when formed as thin sheets in a fuel cell stack, and expensive machining is necessary to form the flow-fields, since near-net shape fabrication of the plates is not possible with graphite.
An example of the use of graphite is shown in U.S. Pat. No. 4,124,747. Therein, it was noted that past compositions of polymeric plastics loaded with conductive solids such as carbon black, graphite, and finely divided metals have shown poor mechanical properties and are porous. In particular, thermoplastic polymers and conductive fillers were not deemed suitable for sophisticated applications such as a fuel cell. Nevertheless, in the invention, a bipolar plate was made from a mixture of crystalline propylene-ethylene thermoplastic copolymer and at least 30 parts by weight of carbon black and/or graphite per 100 parts by weight of copolymer. The mixture was prepared under high shear and at least 100° C. to minimize degradation of the copolymer. The resulting product had a resistivity from about 0.5 to 10 ohms-cm. No fuel cell test data was shown. Resistivity levels shown may be too high for use of the plates in a fuel cell. Higher carbon loadings would therefore be needed, precluding the use of high shear mixing.
Another example of using graphite with a thermoplastic polymer for a bipolar plate is U.S. Pat. No. 4,339,322. The graphite and thermoplastic fluoropolymer were combined in a weight ratio from 2.5:1 to 16:1. Carbon fibers were added for strength and conductivity. The fibers were preferably hammer-milled fibers having an average diameter of 0.05 inches. The resulting bipolar plate was formed by compression molding and had a resistivity down to about 1.9×10
−3
ohms/inch. Although mechanical strength may be improved by this approach, the use of compression molding is likely to leave porosity at the interfaces between the fibers and the polymer matrix.
In U.S. Pat. No. 4,098,967, a bipolar plate for a lead-acid battery was made from a plastic filled with a glassy or vitreous carbon at 40 to 80% carbon by volume. The plastics included thermoplastics and fluorocarbon plastics. However, it was noted that the conductivity of vitreous carbon was substantially less than that of carbon black or graphite and, therefore, heavy loading was required. The resulting product has a specific resistance of about 0.0002 ohm-cm. The use of compression molding and high carbon loadings in this design is likely to provide poor mechanical properties and relatively high porosity.
In the context of another lead-acid battery, U.S. Pat. No. 5,141,828 discloses a mixture of thermoplastic polymer (such as polyethylene) and a uniform dispersion of carbon black for the bipolar plates. The carbon black was present at about 20 to 40% by weight. The polymer and carbon black were mixed in a solvent, the solvent was then evaporated, and the resulting mixture was pulverized to form a powder. The powder was then compression molded into plates. While it was claimed that the plates provided low internal resistance, no quantitative specifics were disclosed. The relatively low carbon content would provide better mechanical properties on compression molding, but the resistivity levels are likely to be too high for fuel cell operation.
A graphite powder bipolar plate for a zinc bromide battery was disclosed in U.S. Pat. No. 4,758,473. Prior vitreous carbon bipolar plates were noted to be brittle, expensive, and chemically unstable. It was further noted that prior bipolar plates made of graphite and thermoplastic fluoropolymers, as well as glassy carbon and plastic, did not provide low cost, durability, and good electrical performance. Thus, in the invention, gr

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Nanocomposite for fuel cell bipolar plate does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Nanocomposite for fuel cell bipolar plate, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Nanocomposite for fuel cell bipolar plate will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3110976

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.