N-dimensional material planning method and system with...

Data processing: generic control systems or specific application – Specific application – apparatus or process – Product assembly or manufacturing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C700S049000, C700S096000, C700S099000, C700S103000, C700S106000, C705S004000, C705S023000, C705S029000

Reexamination Certificate

active

06243613

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates generally to material planning systems. More specifically, the present invention relates to material planning systems wherein the relationship between the user's plant and a plurality of material suppliers is represented in a N dimensional space. Advantageously, a corresponding system and software programs for converting a general purpose computer into a multi-dimensional material planning system are also disclosed.
Numerous plants and factories are trying to establish material planning policies with suppliers to support make-to-order manufacturing environments, particularly those plants in the consumer electronics industry endeavoring to establish successful development and implementation of novel and efficient “quick response” logistics practices with major retailers. Many companies have already spent significant effort in raising awareness about the importance of a material planning process tightly integrated with their factory scheduling process. Many of these companies have also identified candidate policies, e.g., just in time (JIT) material shipments, as well as variables upon which to build these policies, e.g., usage for each part, delivery lead time for each part, supplier flexibility, etc. At the same time, it has been difficult to develop a unified framework under which all material requirements can be planned, ordered and delivered. In particular, factories having a strategic goal of “payment-to-suppliers-upon-use” often require amendments to their existing material planning policies.
Planning material to support make-to-order manufacturing with policies such as “payment-to-suppliers-upon-use” is more than an information technology issue. In particular, it demands considerable innovation in developing a mutually optimized procurement process, linking it to the scheduling process, and managing the financial data. The required functionality does not exist in off-the-shelf plug-in software.
Several approaches to material issues have been developed over the years. U.S. Pat. No. 4,887,218 to Natarajan discloses methods for optimizing production planning. The methods require entry of manufacturing characteristics and management priorities and generates performance metrics and a production release plan. U.S. Pat. No. 4,887,218 is based on enumeration/search methodology and simulation. In contrast, U.S. Pat. No. 5,233,533 to Edstrom et al. discloses methods for controlling production scheduling/loading based on supplied manufacturing characteristics and assigned due dates. Using heuristic finite backward/forward scheduling and dynamic resource selection, the program generates an optimum day-to-day operations schedule. Furthermore, U.S. Pat. No. 5,446,890 to Renslo et al. discloses a method of product demand forecasting using established demand history and knowledge based systems and simulation.
A somewhat different approach is disclosed by U.S. Pat. No. 5,608,621 to Caveney et al., which discloses a computer system including a memory, a processor, an input and an output. The computer system receives part data and forecast data for each part in an inventory, including the number of units in the inventory, the cost, and the forecast unit demand. The computer system uses the part data and forecast data for each part to optimize the number of units of each part in the inventory for a selected inventory investment or service level constraint. Moreover, the computer system optimizes the number of units of each part in the inventory by determining the number of units for each part for which the marginal increase in the number of orders for the part filled from the inventory for each additional order stocked is equal to the marginal increase for every other part and for which either the inventory service level equals the service level constraint or the inventory investment equals the inventory investment constraint. The computer system then outputs a determined minimum unit replenishment quantity and a safety unit quantity for each part. The minimum unit replenishment quantities and the safety unit quantity are used to determine the number of units of each part used to resupply the inventory. All of the patents mentioned above are incorporated herein by reference for all purposes.
What is needed is a material planning system and corresponding method which facilitates material procurement and purchasing planning. Moreover, what is needed is a material planning system and corresponding method which utilizes supplier data and material data and which operates in accordance with predetermined rules. Advantageously, a portion of the predefined rules can be controlled by the system user. Furthermore, a material planning system and corresponding method which not only displays an optimum supply policy for each purchased part but also displays the rationale behind the selected supply policy would be extremely desirable.
SUMMARY OF THE INVENTION
Based on the above and foregoing, it can be appreciated that there presently exists a need in the art for a material planning system and corresponding method which overcomes the above-described deficiencies. The present invention was motivated by a desire to overcome the drawbacks and shortcomings of the presently available technology, and thereby fulfill this need in the art.
The present invention represents a methodology embodied in a set of computer software tools for profiling supplier capabilities and material requirements so as to determine optimum supply policy. Moreover, the present invention encompasses a computer system for profiling supplier capabilities and material requirements so as to determine and display optimum supply policy along with the underlying rationale behind the selected policy. Advantageously, the computer system and corresponding operating method employ an N-dimensional data space for profiling supplier capabilities; optimum supply policies for each part represent the intersection of a surface with the N-dimensional data space.
One object of the present invention is to provide a material planning system and corresponding method which reduces asset deployment through substitution of physical material inventory with information.
Another object according to the present invention is to provide a material planning system and corresponding method which increases asset utilization through proper deployment of “payment-to-suppliers-upon-use” strategy.
Still another object according to the present invention is provide a material planning system and corresponding method which reduces supplier administrative costs when the suppliers schedule themselves.
Yet another object according to the present invention is to provide a material planning system and corresponding method which reduces “expediting” events by the factory through generation of smoother delivery schedules.
Another object according to the present invention is to provide a material planning system and corresponding method which provides the factory with an opportunity to establish and/or nurture longer-term partnerships with its suppliers.
An object according to the present invention is to provide a material planning system and corresponding method which permits enhanced flexibility through guaranteed inventory consignment.
These and other objects, features and advantages according to the present invention are provided by a storage medium which stores computer readable instructions for permitting a computer to store supplier characterization data in an N dimensional data space and to evaluate the supplier characterization data to thereby generate at least one of a current supply policy assessment and a recommended supply policy goal. According to one aspect of the present invention, the at least one of the current supply policy assessment and the recommended supply policy goal can be displayed as an intersection between the N dimensional data space and a surface. Preferably, the surface comprises a plane. According to another aspect of the present invention, the storage medium is a hard drive disposed in a c

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

N-dimensional material planning method and system with... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with N-dimensional material planning method and system with..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and N-dimensional material planning method and system with... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2476080

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.