Chemistry: molecular biology and microbiology – Micro-organism – per se ; compositions thereof; proces of... – Bacteria or actinomycetales; media therefor
Reexamination Certificate
2000-04-28
2002-06-25
Achutamurthy, Ponnathapu (Department: 1652)
Chemistry: molecular biology and microbiology
Micro-organism, per se ; compositions thereof; proces of...
Bacteria or actinomycetales; media therefor
Reexamination Certificate
active
06410301
ABSTRACT:
FIELD OF THE INVENTION
The present invention provides recombinant methods and materials for producing polyketides in recombinant host cells. The recombinant host cells are from the suborder Cystobacterineae, preferably from the genera Myxococcus and Stigmatella that have been transformed with recombinant DNA expression vectors of the invention that encode modular or iterative polyketide synthase (PKS) genes. The recombinant host cells produce known and novel polyketides, including but not limited to epothilone and epothilone derivatives. The invention relates to the fields of agriculture, chemistry, medicinal chemistry, medicine, molecular biology, and pharmacology.
BACKGROUND OF THE INVENTION
Polyketides constitute a class of structurally diverse compounds synthesized, at least in part, from two carbon unit building block compounds through a series of Claisen type condensations and subsequent modifications. Polyketides include antibiotics such as tetracycline and erythromycin, anticancer agents such as epothilone and daunomycin, and immunosuppressants such as FK506 and rapamycin. Polyketides occur naturally in many types of organisms, including fungi and mycelial bacteria. Polyketides are synthesized in vivo by polyketides synthase enzymes commonly referred to as PKS enzymes. Two major types of PKS are known that differ in their structure and the manner in which they synthesize polyketides. These two types are commonly referred to as Type I or modular and Type II or iterative (aromatic) PKS enzymes.
The present invention provides methods and recombinant expression vectors and host cells for the production of modular or iterative PKS enzymes and the polyketides produced by those enzymes. Modular PKS enzymes are typically multi-protein complexes in which each protein contains multiple active sites, each of which is used only once during carbon chain assembly and modification. Iterative PKS enzymes are typically multi-protein complexes in which each protein contains only one or at most two active sites, each of which is used multiple times during carbon chain assembly and modification. As described in more detail below, a large number of the genes for both modular and aromatic PKS enzymes have been cloned.
Modular PKS genes are composed of coding sequences organized to encode a loading module, a number of extender modules, and a releasing domain. As described more fully below, each of these domains and modules corresponds to a polypeptide with one or more specific functions. Generally, the loading module is responsible for binding the first building block used to synthesize the polyketide and transferring it to the first extender module. The building blocks used to form complex polyketides are typically acylthioesters, most commonly acetyl, propionyl, malonyl, methylmalonyl, hydroxymalonyl, methoxymalonyl, and ethylmalonyl CoA. Other building blocks include amino acid-like acylthioesters. PKSs catalyze the biosynthesis of polyketides through repeated, decarboxylative Claisen condensations between the acylthioester building blocks. Each module is responsible for binding a building block, performing one or more functions on that building block, and transferring the resulting compound to the next module. The next module, in turn, is responsible for attaching the next building block and transferring the growing compound to the next module until synthesis is complete. At that point, the releasing domain, often an enzymatic thioesterase (TE) activity, cleaves the polyketide from the PKS.
The polyketide known as 6-deoxyerythronolide B (6-dEB) is synthesized by a prototypical modular PKS enzyme. The genes, known as eryAl, eryAII, and eryAIII, that code for the multi-subunit protein known as deoxyerythronolide B synthase or DEBS (each subunit is known as DEBS1, DEBS2, or DEBS3) that synthesizes 6-dEB are described in U.S. Pat. Nos. 5,712,146 and 5,824,513, incorporated herein by reference.
The loading module of the DEBS PKS consists of an acyltransferase (AT) and an acyl carrier protein (ACP). The AT of the DEBS loading module recognizes propionyl CoA (other loading module ATs can recognize other acyl-CoAs, such as acetyl, malonyl, methylmalonyl, or butyryl CoA) and transfers it as a thioester to the ACP of the loading module. Concurrently, the AT on each of the six extender modules of DEBS recognizes a methylmalonyl CoA (other extender module ATs can recognize other CoAs, such as malonyl or alpha-substituted malonyl CoAs, i.e., malonyl, ethylmalonyl, and 2-hydroxymalonyl CoA) and transfers it to the ACP of that module to form a thioester. Once DEBS is primed with acyl- and methylmalonyl-ACPs, the acyl group of the loading module migrates to form a thioester (trans-esterification) at the KS of the first extender module; at this stage, module one possesses an acyl-KS adjacent to a methylmalonyl ACP. The acyl group derived from the DEBS loading module is then covalently attached to the alpha-carbon of the extender group to form a carbon-carbon bond, driven by concomitant decarboxylation, and generating a new acyl-ACP that has a backbone two carbons longer than the loading unit (elongation or extension). The growing polyketide chain is transferred from the ACP to the KS of the next module of DEBS, and the process continues.
The polyketide chain, growing by two carbons for each module of DEBS, is sequentially passed as a covalently bound thioester from module to module, in an assembly line-like process. The carbon chain produced by this process alone would possess a ketone at every other carbon atom, producing a polyketone, from which the name polyketide arises. Commonly, however, additional enzymatic activities modify the beta keto group of each two carbon unit just after it has been added to the growing polyketide chain but before it is transferred to the next module. Thus, in addition to the minimal module containing KS, AT, and ACP necessary to form the carbon-carbon bond, modules may contain a ketoreductase (KR) that reduces the keto group to an alcohol. Modules may also contain a KR plus a dehydratase (DH) that dehydrates the alcohol to a double bond. Modules may also contain a KR, a DH, and an enoylreductase (ER) that converts the double bond to a saturated single bond using the beta carbon as a methylene function. The DEBS modules include those with only a KR domain, only an inactive KR domain, and with all three KR, DH, and ER domains.
Once a polyketide chain traverses the final module of a PKS, it encounters the releasing domain, typically a thioesterase, found at the carboxyl end of most modular PKS enzymes. Here, the polyketide is cleaved from the enzyme and, for many but not all polyketides, cyclized. The polyketide can be modified further by tailoring or modification enzymes; these enzymes add carbohydrate groups or methyl groups, or make other modifications, i.e., oxidation or reduction, on the polyketide core molecule. For example, 6-dEB is hydroxylated, methylated, and glycosylated (glycosidated) to yield the well known antibiotic erythromycin A in the
Saccharopolyspora erythraea
cells in which it is produced naturally.
While the above description applies generally to modular PKS enzymes and specifically to DEBS, there are a number of variations that exist in nature. For example, many PKS enzymes comprise loading modules that, unlike the loading module of DEBS, comprise an “inactive” KS domain that functions as a decarboxylase. This inactive KS is in most instances called KS
Q
, where the superscript is the single-letter abbreviation for the amino acid (glutamine) that is present instead of the active site cysteine required for ketosynthase activity. The epothilone PKS loading module contains a KS
Y
domain in which tyrosine has replaced the cysteine. Moreover, the synthesis of other polyketides begins with starter units that are unlike those bound by the DEBS or epothilone loading modules. The enzymes that bind such starter units can include, for example, an AMP ligase such as that employed in the biosynthesis of FK520, FK506, and rapamycin, a non-ribosomal peptide synth
Julien Bryan
Katz Leonard
Khosla Chaitan
Achutamurthy Ponnathapu
Kaster, Esq. Kevin
Kerr Kathleen
Kosan Biosciences, Inc.
Morrison & Foerster / LLP
LandOfFree
Myxococcus host cells for the production of epothilones does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Myxococcus host cells for the production of epothilones, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Myxococcus host cells for the production of epothilones will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2972572