Multiple client remote agent network method

Telephonic communications – Centralized switching system – Call distribution to operator

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C379S265010, C379S265110, C379S265120, C379S266090

Reexamination Certificate

active

06320956

ABSTRACT:

FIELD OF INVENTION
The present invention relates generally to a system enabling remotely located agents to work as members of an automatic call distributor (“ACD”) team, and more particularly, for remote agents to service a plurality of different call center clients.
BACKGROUND OF THE INVENTION
Call centers handle an increasing volume of telephonic inquiries for sales, information, customer support and other services. Typical call centers provide the ability to route a plurality of incoming, customer-initiated calls to call agents which provide sales, information, or support. An ACD is utilized to selectively route the incoming calls. An ACD generally refers to a device that receives incoming calls, answers with a taped announcement, holds the calls with background music or a message, then automatically assigns the call on a first come first serve basis to the next available call agent. However, newer ACD systems selective route the incoming calls based on various additional information such as the number of calls, the number of the caller, the geographic location of the caller, past caller data, and other relevant criteria. Once the ACD has evaluated the inbound caller's information, if any, the ACD then searches for an available call agent to service the call. The number of agents within the call center is often limited by the office space available for the agents to operate. A frequent problem experienced by call centers is the situation where there too few call agents to handle the number of incoming customer calls. In those situation, the customer is frequently put on hold and made to wait until a call agent becomes available. However, many potential customers, when faced with an extended wait, may simply terminate the call before the call center has the opportunity to conduct a business transaction, thereby causing an economic loss. Additionally, customers calling for support or information may become disgruntled or unsatisfied with a business that is unable to provide a sufficient number of call agents to service the call in a timely manner.
For most applications, an agent requires both a voice and data connection. The agent audibly communicates with the customer through a typical telephone line connection and records whatever transactions take place through a computer terminal networked to the call center's record system. Modem advancements in the field of electronics, computers and telecommunications have created standardized network protocols and hardware, yielding a constantly advancing global information infrastructure. Local area networks (“LANs”) based in a single geographic location have given rise to wide area networks (“WANs”) which efficiently interconnect information systems between large geographic distances. Both home and business computers currently sold offer integrated or optional components to communicate through standard networks including the Internet.
Many problems experienced in conventional call centers are rooted in the fact that operations are both physically and geographically confined. Large call centers may select a geographically attractive location only to find a limited workforce in that area. Large call centers typically pay for the training of their call agents and simultaneously experience a high turnover rate. Furthermore, should the customer initiated call exceed the capacity of the call center, physical expansion of the facilities is costly.
Hence, there have been recent developments in the field of telecommunications to enable remote agents (sometimes called “home agents”) to service overflow or regular customer initiated incoming calls. The benefits are obvious. Remote agents may work from home reducing the cost of maintaining large call center locations. The equipment and software needed to implement remote communications are widely available. Remote agents gain the benefit of foregoing commuting to a geographically distant office, avail themselves of flexible schedules, reduce the burden of reliance on child care or other similar circumstances. Furthermore, remote agent opportunities are particularly beneficial to persons with disabilities who may have special needs and require more flexible working conditions and schedules.
Previous attempts have been made to implement remote agent operations such as described in U.S. Pat. No. 5,459,780 to Sand (the '780 patent); U.S. Pat. No. 5,291,551 to Conn et al (the '551 patent); U.S. Pat. No. 5,073,890 to Danielsen (the '890 patent); all of which are incorporate herein by reference.
U.S. Pat. No. 5,459,780 to Sand (the '780 patent) describes a work at home agent ACD comprising an ACD host switch, an agent switch, an intelligent agent workstation, a data network, a home agent server (“HAS”), a host processor, and a management information system (“MIS”), whereby call traffic routed through a public switched telephone network (“PSTN”) is distributed by the ACD host switch to the agent switch and received by the workstation. The workstation receives voice signals from the agent switch and also transmits connection status, order processing, and other information via the data network to the HAS. The HAS transmits the data to a host processor which in turn communicates with the MIS, which monitors the distribution traffic and controls the ACD host switch to optimize call distribution, particularly when caller traffic justifies maintaining an open voice path to the remote agent to reduce call setup time.
U.S. Pat. No. 5,291,551 to Conn et al (the '551 patent) describes a home agent telecommunication system comprising one or more home agents having a voice terminal and a computer terminal to access a transaction processing center. The transaction processing center may comprise a catalog order facility, a travel reservation entity, a stock brokerage, or the like. A customer call is received by an LEC which is routed to a PSTN and received by a second exchange which serves the geographic area encompassed by the transaction processing center. The transaction processing center designates the home agent assigned to receive the call which is routed across a combined voice and data line. The perceived benefit of this system is that the home agent is not continuously connected to the transaction processing center on a line that may remain idle much of the time.
U.S. Pat. No. 5,073,890 to Danielsen (the '890 patent) describes a remote agent operation for automatic call distributors utilizing ISDN comprising a remote agent position, a customer telephone, and a remote database, whereby a session initiates when the remote agent position is located near a local switch which connects to an ACD host switch via a telecommunications network. A front-end process to direct calls from the customer telephone to an available remote agent position. The local switch converts message data from a SS
7
network format to an ISDN standard used by the remote agent position. The perceived benefit of this system is the economical placement of remote agents using ISDN to nearby local telecommunication switching systems instead of requiring them to be close to the ACD host switch.
However, none of the systems in the prior art describe a remote agent system capable of handling a plurality of different call centers. A typical call center may only require the use of remote agents during certain periods of high inbound call traffic. Therefore, it is costly and inefficient to pay for a remote agent that is not being utilized during periods of low caller traffic. However, should an unexpected surge in caller traffic occur, current systems lack the ability to immediately access a base of highly qualified, motivated remote agents.
From the remote agent's point of view, working for a singular call center has distinct disadvantages. The income base of the remote agent is dependent on the singular call center's ability to utilize him or her. For example, many call centers servicing catalog sales may experience a flood of calls during the holiday season whereby there is sufficient work for t

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Multiple client remote agent network method does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Multiple client remote agent network method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Multiple client remote agent network method will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2570765

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.