Multichip module with built in repeaters and method

Semiconductor device manufacturing: process – Packaging or treatment of packaged semiconductor – Assembly of plural semiconductive substrates each possessing...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C438S128000, C438S006000, C438S010000, C257S691000, C361S728000, C439S055000

Reexamination Certificate

active

06306681

ABSTRACT:

TECHNICAL FIELD
This invention relates generally to multichip modules and more particularly to multichip modules using interposers formed from semiconductor material.
BACKGROUND OF THE INVENTION
Digital circuits in particular have increased in complexity, density, operating frequency and utility at an astonishing rate over the last several decades. Additionally, increasing functional specialization for integrated circuits has developed as integrated circuit technology has matured. Integrated circuits developed for one set of tasks, such as microprocessors for manipulating digital data, require a first set of process steps. Integrated circuits developed for another set of tasks, such as DRAMs for storing digital data, require a second set of process steps. Integrated circuits developed for a still different set of tasks, such as RF transmitters or receivers for coupling data between devices, require still another set of process steps. The cumulative effect of defects in integrated circuit manufacturing results in a strong preference for using as few processing steps as possible to provide a given integrated circuit function.
For example, if yields for each mask level are 90%, four masking steps result in a total yield of 65%, while six masking steps result in a yield of 53% and eight masking steps result in a yield of 43%. Complex integrated circuits may require several dozen masking steps. Accordingly, there are significant advantages to avoiding exposing a wafer of semiconductor material that will include a microprocessor to masking steps unique to forming DRAMs or RF circuits and vice versa.
As a result, there are economic advantages associated with forming a module or system from an interconnected group of different types of previously-tested integrated circuits (i.e., known good die). Further advantages can result from mounting the different types of integrated circuits in die form on a common substrate and then encapsulating the composite assembly in a package common to all of the die to form a module, known as a multichip module or MCM. In MCMs, the die are interconnected to wiring formed on the common substrate, also known as an interposer, using conventional interconnection technology.
As the area of each die in the MCM increases, thermal coefficient of expansion mismatch between the die and the interposer becomes increasingly critical, at least in part because the thickness of the material forming the die is not increased as the area of the die is increased. One solution to this problem is to make the interposer from the same material that the die are made from, i.e., silicon. This allows increasingly complex integrated circuits to be interconnected without exaggerating thermal coefficient of expansion mismatch problems that could occur either during packaging or as a result of thermal cycling in normal use. Additionally, passive components may be formed or mounted on the interposer, as described in “High Frequency IC to IC Signaling on Rapidly Prototyped Flip Chip MCM-D Substrate”, by J. Reed et al., 1998 Int. Conf. on MCMs and High Density Packaging, IEEE Cat. No. 0-7803-4850-8/98, pp. 172-177.
For example, “Integrated Passive Components in MCM-Si Technology and their Applications in RF-Systems,” by J. Hartung, 1998 Int. Conf. on MCMs and High Density Packaging, pp. 256-261, IEEE Cat. No. 0-7803-4850-8/98, describes an approach whereby multiple aluminum layers are conventionally formed and patterned on the silicon interposer to provide interconnections. The aluminum layers are separated by conventional Si
3
N
4
interlevel dielectric layers, allowing capacitors to be formed on the silicon interposer. Additionally, a TaSi layer is formed and patterned on the silicon interposer to provide resistors.
However, increasing circuit functionality and the density of components within integrated circuits continue to increase demand for progressively smaller linewidths, both within the integrated circuits themselves and on the interposer. As linewidths shrink, RC transmission line effects in interconnections increase, particularly in longer interconnections. Additionally, these effects are more pronounced as operating frequencies increase. Often, a simple lumped-element model is used to approximate RC effects in long interconnections. Because both the resistance and the capacitance of the interconnection are linearly proportional to the length of the interconnection, signal propagation delays along the interconnection can be modeled as being proportional to the square of the length of the interconnection. Signals traveling along relatively long interconnections suffer delays and other forms of distortion due to frequency-dependent attenuation and cross-coupling between interconnections. As a result, signals transmitted along such interconnections may be corrupted, slowing operation of integrated circuits or even causing failure. “Interconnect Scaling: Signal Integrity and Performance in Future High-Speed CMOS Designs,” by D. Sylvester et al., 1998 Int. Conf. on MCMs and High Density Packaging, pp. 42-43, IEEE Cat. No. 0-7803-4850-8/98, discusses signal corruption in transmission of signals within ultra large scale integration CMOS integrated circuits as linewidths shrink and signal propagation distances increase.
Increasing circuit functionality not only increases the density and decreases the width of interconnections, but it also inherently increases the lengths of interconnections as die sizes increase to accommodate the increased functionality. Increased interconnection lengths further exacerbate the above-described problems.
There is therefore a need for improved interconnection technology in MCMs in order to be able to provide MCMs that can accommodate both higher operating frequencies and greater interconnection densities.
SUMMARY OF THE INVENTION
In one aspect, the present invention includes a method for coupling signals between a plurality of integrated circuits mounted on an interposer. The method includes coupling signals from a first integrated circuit mounted on the interposer to one segment of an interconnection formed on the interposer, propagating the signals for one distance along the one segment and detecting the signals by a repeater circuit coupled to the interposer. The method also includes regenerating the signals by the repeater circuit and coupling the regenerated signals to another segment of the interconnection, allowing the regenerated signals to be coupled to another of the integrated circuits.
In another aspect, the present invention includes an interposer having utility in multichip modules. The interposer includes a wafer of semiconductor material and a plurality of interconnections formed on a surface of the wafer. One or more repeater circuits are disposed on the wafer and are electrically coupled to lengths of one or more of the plurality of interconnections.
In one aspect, multiple integrated circuit die are mounted on the interposer and are electrically interconnected by the interconnections and the repeater circuits. The integrated circuits may include microprocessors, memory integrated circuits such as DRAMs or SRAMs or specialized I/O integrated circuits. Passive components may be formed on or mounted on the interposer.
As a result, integrated circuit die that are formed from the same type of semiconductor material as the interposer have thermal coefficients of expansion that are matched to that of the interposer, reducing thermal stress effects when the integrated circuit die are mounted on the interposer. Significantly, the repeater circuits modify quadratic RC transmission delays experienced by signals coupled across the interposer in the interconnections. Crosstalk between interconnections and power dissipation are reduced by proper placement of the repeater circuits and the interconnections on the interposer. The repeater circuits may be formed monolithically in the interposer or may be separate integrated circuits that are coupled to the interposer.
In one aspect, the integrated circuits, the interconnections and the repeater circu

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Multichip module with built in repeaters and method does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Multichip module with built in repeaters and method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Multichip module with built in repeaters and method will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2604101

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.