Electrical computers and digital processing systems: memory – Storage accessing and control – Specific memory composition
Reexamination Certificate
2000-11-17
2003-05-13
Yoo, Do Hyun (Department: 2187)
Electrical computers and digital processing systems: memory
Storage accessing and control
Specific memory composition
C711S113000, C710S058000
Reexamination Certificate
active
06564291
ABSTRACT:
TECHNICAL FIELD
The present invention relates to peripheral storage devices and, more particularly, to a multi-function buffer system for use in a peripheral storage device.
BACKGROUND OF THE INVENTION
Hard disk drives and other peripheral storage devices have become a standard feature in most computer systems. Such devices provide mass storage functionality for a host computer, and may include hard disk drives, CDROM drives, tape drives, optical disk memory devices, floppy disk drives, and the like. For example, hard disk drives include one or more magnetically coated platters used for storing program instructions, data, and other information used by the computer system. One or more such platters may be configured in a stack, which may be rotated by a spindle or servo motor. A space is provided between each platter to allow an arm having a read/write head to be positioned on each side of each platter such that information may be stored and retrieved. Information may be stored on one or both sides of the platters, which are generally organized into sectors, tracks, zones, and cylinders.
The read/write heads may be mounted onto one or more suspension arms whereby each of the read/write heads may be positioned as desired. The suspension arms may be coupled together at a voice coil motor (VCM) to form one unit or assembly that is positionable by the voice coil motor. The voice coil motor positions the suspension arms so that an active read/write head is properly positioned for reading or writing information. The read/write heads may thus be positioned between an inner diameter and an outer diameter of the platters in a controlled fashion to access data stored thereon.
Hard disk drives and other types of peripheral storage devices also include a variety of electronic control circuitry for processing data and for controlling its overall operation, including a hard disk controller. For example, the controller may include a processor, a pre-amplifier, a read channel, a write channel, a servo controller, a motor control circuit, a read-only memory (ROM), a random-access memory (RAM), and a variety of disk control circuitry to control the operation of the hard disk drive and to properly interface the hard disk drive to a bus in a host computer system. The disk control circuitry generally includes a processor (e.g., a DSP, microprocessor, microcontroller, or the like) for executing instructions stored in memory to control the operation and interface of the hard disk drive.
Hard disk drives and other peripheral storage devices perform write, read, and servo operations when storing and retrieving data. Generally, a write operation includes receiving data from a system bus and storing the data on the platters. In a read operation, the appropriate sector to be read is located and data that has been previously written to one or more platters is read. The data is then provided to the host computer system. The disk drive may further comprise some form of buffer memory to buffer or temporarily store information on its way from the host system to the storage media (platters) and/or on its way from the media to the host system. In addition, the control circuitry may include instruction memory (e.g., ROM, EEPROM, FLASH, and the like) used for storing firmware instructions for execution by the controller processor, and execution memory (e.g., SRAM) used for storing temporary variables, intermediate results, and the like (scratchpad).
Sometimes, buffer memory is used to store executable instructions as well as to buffer transferred data. For instance, the buffer memory may be used to store updated firmware, which may be executed by the controller processor while the instruction memory is rewritten to include the updated firmware instructions. Thereafter, the controller processor may execute normally by fetching the updated firmware instructions from the instruction memory, whereby the buffer memory is again free for other usage as a buffer for transferred information.
Such buffer memory has heretofore primarily been external to the peripheral storage device controller. The controller accesses the external buffer memory via a buffer manager in the controller circuit. Whereas the primary purpose of such buffer memory is for temporary storage of information in transit to or from the platters, firmware instructions are commonly stored in the buffer, for instance, those instructions associated with small and/or low speed functions.
Peripheral storage devices, such as disk drive products are desired for a variety of different applications, each having different performance requirements. For instance, some disk drive applications are cost sensitive, and may sacrifice performance (e.g., by providing only a small amount of processor RAM) in favor of reduced cost, while providing an integral buffer memory for temporary storage of information being transferred. Other less cost sensitive applications may require a large amount of buffer memory (e.g., beyond the amount which may be easily integrated into the controller circuitry), as well as more processor instruction execution RAM. The high performance applications may tend to use a buffer RAM sufficiently large as to make integration not cost-effective when discrete or external RAM options are less expensive.
Peripheral storage device manufacturers accordingly have made efforts to keep product costs low and at the same time to maximize product performance, across product lines with offerings for a variety of cost/performance goals. However, some tradeoffs are inevitable. For example, integration of memory into a controller circuit may provide improved access time performance, but may increase the cost compared with external memory devices. While such tradeoffs may be made on a product-by-product basis, further cost reduction across an entire product line may be realized through the provision of components common to two or more peripheral storage device products, each of which has different cost/performance design goals. Thus, there is a need for improved peripheral storage device controller circuits providing reduced cost across a product line of drive controllers having diverse performance/cost design goals.
SUMMARY OF THE INVENTION
The present invention provides a multi-function buffer system comprising an integrated memory, which may be adapted for use as instruction memory, scratchpad RAM, and/or as an information buffer. For instance, the integrated memory may be employed by a processor for storage of instructions (e.g., instruction space) and/or data (e.g., data space or ‘scratchpad’ memory). Alternatively or in combination, the integrated memory may be employed by a buffer manager to buffer or store information being transferred between a peripheral storage device and a host computer. The multi-function memory may thus be employed in both low and high performance peripheral storage devices, allowing reduced cost across multiple product offerings. The buffer system may provide interfacing from the integrated memory to the controller buffer manager or to a processor. Thus, the buffer system may be employed to provide buffer memory via the buffer manager in cost sensitive peripheral storage devices.
Additional interfacing may be provided to an external buffer memory. Where an external buffer memory is provided in the peripheral storage device, the buffer system may provide access between the external buffer memory and the buffer manager, while also providing access between the processor and the internal memory. For high performance peripheral storage devices, therefore, the buffer system allows use of a large external buffer memory via the buffer manager, as well as the addition of processor execution memory for scratchpad or instruction storage use via the processor. Thus, the invention provides a versatile buffer system adaptable to various applications having diverse and/or disparate performance goals and requirements, while achieving lower cost associated with universally applicable components.
The selective access to the internal memory device, as we
Brady W. James
Moazzami Nasser
Swayze, Jr. W. Daniel
Telecky , Jr. Frederick J.
Texas Instruments Incorporated
LandOfFree
Multi-function peripheral storage device buffer system does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Multi-function peripheral storage device buffer system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Multi-function peripheral storage device buffer system will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3020720