Flexible or portable closure – partition – or panel – Plural strip – slat – or panel type – With mounting or supporting means
Reexamination Certificate
1999-06-02
2002-06-11
Lev, Bruce A. (Department: 3634)
Flexible or portable closure, partition, or panel
Plural strip, slat, or panel type
With mounting or supporting means
C160S189000, C049S199000
Reexamination Certificate
active
06401792
ABSTRACT:
TECHNICAL FIELD
The present invention relates generally to operators for doors. More particularly, the present invention relates to power-driven operators for opening and closing doors. More specifically, the present invention relates to a motor-driven operator for driving and controlling a door, such as a sectional overhead garage door, during its operating cycle, including opening and closing movements.
BACKGROUND ART
Motorized apparatus for opening and closing sectional overhead doors has long been known in the art. These powered door operators developed in part due to extremely large, heavy commercial doors for industrial buildings, warehouses, and the like where opening and closing of the doors essentially mandates power assistance. Later, homeowners' demands for the convenience and safety of door operators resulted in an extremely large market for powered door operators for residential usage.
The vast majority of motorized operators for residential garage doors employ a trolley-type system that applies force to a section of the door for powering it between the open and closed positions. Another type of motorized operator is known as a “jack-shaft” operator, which is used virtually exclusively in commercial applications and is so named by virtue of similarities with transmission devices where the power or drive shaft is parallel to the driven shaft, with the transfer of power occurring mechanically as by gears, belts, or chains between the drive shaft and a driven shaft controlling door position. While some efforts have been made to configure hydraulically or pneumatically-driven operators, such efforts have not achieved any substantial extent of commercial acceptance.
The well-known trolley-type door operators are normally connected directly to the top section of a garage door and for universal application may be powered to operate doors of vastly different size and weight, even with little or no assistance from a counterbalance system for the door. Since the operating force capability of trolley-type operators is normally very high, force adjustments are normally necessary and provided to allow for varying conditions and to allow the operator to be tuned, depending on the application. When a garage door and trolley-type operator are initially installed and both adjusted for optimum performance, the overhead door system can perform well as designed. However, as the system ages, additional friction develops in door and operator components due to loss of lubrication at rollers and hinges. Also, the door can absorb moisture and become heavier, and counterbalance springs can lose some of their original torsional force. These and similar factors can significantly alter the operating characteristics seen by the operator, which may produce erratic door operation such as stops and reversals of the door at unprogrammed locations in the operating cycle.
Rather than ascertaining and correcting the conditions affecting door performance, which is likely beyond a howeowner's capability, or engaging a qualified service person, homeowners frequently increase the force adjustment to the maximum setting. Facilitating this cause for maximum settings is the fact that the force adjustment mechanism is normally conveniently accessible outside the motor housing of trolley-type operators, and adjustment to higher force settings appears to overcome many problems. A further cause for maximum force settings originates with installers who may be paid a fixed amount per installation, such that time considerations result in a maximum force setting rather than ascertaining the reason for and correcting the condition necessitating an inordinately high force setting. Also, return service calls, at least in the short term after installation, are sometimes at the installer's expense. This may motivate an installer to adjust the operator to the maximum force setting so that such a return service call becomes less likely. However, setting an operator on a maximum force adjustment creates an unsafe condition in that the operator becomes highly insensitive to obstructions.
In the event a maximum force setting is effected on a trolley-type operator, the unsafe condition may also be dramatically exemplified in the event of a broken spring or springs. In such case, if the operator is disconnected from the door in the fully open position during an emergency or if faulty door operation is being investigated, one half or all of the uncounterbalanced weight of the door may propel the door to the closed position with a guillotine-like effect.
Another problem with trolley-type door operators is that they do not have a mechanism for automatically disengaging the drive system from the door if the door encounters an obstruction. This necessitates the considerable effort and cost which has been put into developing a variety of ways, such as sensors and encoders, to signal the operator controls when an obstruction is encountered. In virtually all instances, manual disconnect mechanisms between the door and operator are required to make it possible to operate the door manually in the case of power failures or fire and emergency situations where entrapment occurs and the door needs to be disconnected from the operator to free an obstruction. These mechanical disconnects, when coupled with a maximum force setting adjustment of the operator, can readily exert a force on a person or object which may be sufficiently high to bind the disconnect mechanism and render it difficult, if not impossible, to actuate.
In addition to the serious operational deficiencies noted above, manual disconnects, which are normally a rope with a handle, must extend within six feet of the floor to permit grasping and actuation by a person. In the case of a garage opening for a single car, the centrally-located manual disconnect rope and handle, in being positioned medially, can catch on a vehicle during door movement or be difficult to reach due to its positioning over a vehicle located in the garage. Trolley-type door operators raise a host of peripheral problems due to the necessity for mounting the operator to the ceiling or other structure substantially medially of and to the rear of the sectional door in the fully open position.
Operationally, precise alignment is also essential because the connecting arm of the operator is attached directly to the door and thus transmits forces to the door, totally independent of the counterbalance system. In the event of misalignment, the door can readily bind, thereby necessitating frequent adjustment or an undesirable increase in the force adjustment on the operator. It will thus be appreciated that the wider the door, the more significant a misalignment becomes. Further, if an overhead beam or other obstruction is located centrally of the door where an operator would normally be mounted, the off-center mounting of an operator requires added care in terms of compensation in the counterbalance system adjustment, not to mention the increased probability of developing misalignment which must be frequently corrected.
The position of the trolley above the door frequently results in essential lubricant and collected dirt being discharged to fall on the outside face of the door or the floor of a garage. Due to the required positioning of the motor unit of a trolley-type operator as described above, the necessity for mounting the motor housing in a position centrally of the garage and behind the door presents additional ancillary problems. Typically, the motor housing is mounted on perforated angle irons which are in turn mounted by a plurality of screws to the garage ceiling, which normally consists of sheetrock, plastering, or the like. The radial force vectors on the screws occasioned by reaction on the drive motor to door movement, particularly those attendant initial movement of the door, produce a fatigue failure of the ceiling material, which eventually results in a loosening of the attachment screws. This can result in the motor and trolley track weight overcoming the residual attachment screw
Mullet Willis J.
Rodriguez Yan
Slavik Scott A.
Lev Bruce A.
Renner Kenner Greive Bobak Taylor & Weber
Wayne-Dalton Corp.
LandOfFree
Motorized operator for doors does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Motorized operator for doors, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Motorized operator for doors will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2964613