Lead-acid separators and cells and batteries using such...

Chemistry: electrical current producing apparatus – product – and – Current producing cell – elements – subcombinations and... – Separator – retainer or spacer insulating structure

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C429S144000, C429S145000, C429S247000, C429S225000

Reexamination Certificate

active

06406813

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to lead-acid cells and batteries and, more particularly, to separators used in making such cells and batteries.
BACKGROUND OF THE INVENTION
A wide variety of applications, often termed “industrial battery” applications, utilize conventional, flooded electrolyte lead-acid cells and batteries, or sealed lead-acid cells and batteries, often termed VRLA cells and batteries (“valve-regulated lead-acid”). In stationary battery applications, the lead-acid cells and batteries provide stand-by power in the event of a power failure. For this type of application, such cells and batteries are maintained at a full state-of-charge and in a ready-to-use condition, typically by floating at a constant preset voltage. This voltage is in the range of 2.25 to 2.35 volts per cell to maintain the cells in a full state-of-charge while minimizing positive grid corrosion and electrolyte water loss. Stationary batteries are used for stand-by or operational power in a wide variety of applications, including, by way of illustration, telecommunications, utilities, for emergency lighting in commercial buildings, as stand-by power for cable television systems, and in interruptible power supplies for computer back-up power and the like.
Other applications in which lead-acid cells and batteries may be used involve a variety of motive power applications in which an array of cells or batteries provides the motive power for vehicles ranging from Class 1 to Class 3 trucks, various automated guided vehicles, mining vehicles and also railroad locomotives. The performance requirements for motive-power vehicles are quite different from the performance requirement for stationary power sources. In stationary power applications, the depth of discharge in service is relatively shallow, and the number of discharges encountered per unit time are fewer, as most batteries are in float service most of the time. In direct contrast, motive power applications require a relatively higher (i.e., deeper) depth of discharge to be achieved on a continuous cycling basis over a period of time, and while repeating such discharges on a continual basis. Indeed, a common requirement for Class 1-3 trucks is that, in an 8-hour shift, the cell or battery assembly must be capable of delivering an 80% depth of discharge and that performance is required for 300 cycles per year with a useful service life under those conditions of 4 or 5 years.
The widely varying requirements for these many applications have presented substantial problems and an extremely challenging environment in the design and the manufacture of lead-acid cells and batteries. This environment has resulted in, to a large extent, custom designs which satisfy particular applications.
As a consequence, lead-acid cell/battery manufacturers have had to develop families of cells and batteries in an attempt to satisfy the diverse electrical performance criteria. Such criteria vary widely, often requiring large cells connected in parallel, series, or both, to provide a satisfactory power/energy source.
The space requirements often are also quite constricted, with closely defined dimensional requirements. Many types of steel trays and the like are used to house the cells required.
To achieve the family of cells and batteries requires positive and negative grids of various sizes so that the capacity and other electrical performance requirements for an individual cell for a particular application can be satisfied. One approach utilized for VRLA cells has been to provide a series of grids having essentially constant width while varying the height of an individual grid and the number of plates used in a particular cell to achieve a variety of capacity levels or gradations and other electrical performance requirements. While an effective solution, this approach does create challenges that have to be addressed, as will be discussed hereinafter.
The internal configuration of as such VRLA cells can vary widely. In general, such cells are disclosed in U.S. Pat. No. 3,362,861 to McClelland et al. As is thus known, such cells utilize highly absorbent separators; and all of the necessary electrolyte is absorbed within the separators and plates. Such cells are normally sealed from the atmosphere by a valve designed to regulate the internal pressure within the cell so as to provide what is termed an effective “oxygen recombination cycle” (hence, the use of the terms “sealed” and “valve-regulated” as well as “recombinant”).
Recombinant battery separator materials (sometimes termed “RBSMs”) have traditionally comprised a highly absorbent glass microfiber mat. Separators of this type have adequate absorbency to hold the amount of electrolyte desired within the small pores and possess some vacancy of pores to allow the oxygen recombination cycle to proceed. A wide variety of suitable glass fiber mats are commercially available and are in use in VRLA cells and batteries. Glass microfiber is made from a borosilicate glass using a flame attenuation process that produces a microfiber with a diameter in the range from 0.25 to 4 &mgr;m, and with a typical length of 0.8-1.5 &mgr;m. These fibers have the consistency of cotton wool and are processed into a continuous porous sheet-form by a wet laying process on a paper-making machine. Typically, the glass microfiber mat will have a high porosity in the range of 85-95%, and this porosity contributes to the high electrolyte retention.
Despite the widespread use of such glass fiber mats, substantial efforts have been made to develop other recombinant battery separator materials, perceived to satisfy varying objectives. U.S. Pat. No. 4,908,282 to Badger summarizes many different prior art attempts to provide satisfactory separator materials for recombinant cells and batteries. Yet, Badger states that there has not previously been a suggestion of a separator which, when saturated with the electrolyte, leaves a residuum of unfilled voids through which a gas can transfer from one plate to another because the separator is not capable of holding an amount of electrolyte which is sufficient to fill all the voids (col. 2, 11. 20-26).
More particularly, Badger discloses a separator having, in general, two types of fibers. A first set of fibers imparts to the separator an absorbency greater than 90% relative to the electrolyte and a second set of fibers that have a different absorbency which is less than 80% relative to the electrolyte. The first and second fibers are disclosed as being present in proportions such that the absorbency of the overall separator is from 75-95%. Specifically, a separator is disclosed which is made of a mixture of two different grades of glass fibers, one grade of chopped glass strand and a certain grade of polyethylene fibers.
Another prior art attempt to provide a RBSM is U.S. Pat. No. 4,216,280 to Kono et al. The '280 patent discloses separators which comprise glass fibers entangled in the shape of a sheet without the use of a binder and have a first and second portion of glass fibers. The first portion comprises glass fibers having a fiber diameter smaller than one micron; and a second portion uses glass fibers having a fiber diameter larger than 5 microns, as well as an average fiber length of at least 5 millimeters. Such separators are stated to have high electrolyte retention, good mechanical strength, and good shape recovery.
Yet another prior art attempt to provide RBSMs is U.S. Pat. No. 4,367,271 to Hasegawa et al. By way of background, the '271 patent thus states that one prior proposal comprises a glass fiber mixed with a synthetic resin serving as a binding agent, while another type proposed involves mixing a glass fiber with a synthetic resin monofilament fiber. Hasegawa et al. state that such prior approaches are inadequate because these approaches suffer a remarkable decrease in liquid absorption and that the improvement in the mechanical strength is small. The '271 patent is said to provide a separator which is high in liquid absorption, high in strength, and is easy to h

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Lead-acid separators and cells and batteries using such... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Lead-acid separators and cells and batteries using such..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Lead-acid separators and cells and batteries using such... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2964614

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.