MOSFETs with differing gate dielectrics and method of formation

Active solid-state devices (e.g. – transistors – solid-state diode – With means to increase breakdown voltage threshold – With electric field controlling semiconductor layer having a...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C257S497000, C257S506000, C257S511000, C257S521000

Reexamination Certificate

active

06528858

ABSTRACT:

TECHNICAL FIELD
The present invention relates generally to semiconductor devices and the fabrication thereof and, more particularly, to a first and a second MOSFET having differing dielectrics a method of formation.
BACKGROUND
A pervasive trend in modern integrated circuit manufacture is to produce semiconductor devices, such as metal oxide semiconductor field effect transistors MOSFETs), that are as small as possible. In a typical MOSFET, a source and a rain are formed in an active region of a semiconductor layer by implanting N-type or P-type impurities in the layer of semiconductor material. Disposed between the source and the drain is a channel (or body) region. Disposed above the body region is a gate electrode. The gate electrode and the body are spaced apart by a gate dielectric layer. It is noted that MOSFETs can be formed in bulk format (for example, the active region being formed in a silicon substrate) or in a semiconductor-on-insulator (SOI) format (for example, in a silicon film that is disposed on an insulating layer that is, in turn, disposed on a silicon substrate).
Although the fabrication of smaller transistors allows more transistors to be placed on a single monolithic substrate for the formation of relatively large circuit systems in a relatively small die area, this downscaling can result in a number of performance degrading effects. For example, certain materials, when used in a down-scaled device, may become electrically leaky and can cause reliability problems. In addition, the fabrication of downscaled devices should be kept within a thermal budget so as to minimize the introduction of device irregularities.
Accordingly, there exists a need in the art for semiconductor devices, such as MOSFETs, that optimize scale and performance. There also exists a need for corresponding fabrication techniques to make those semiconductor devices.
SUMMARY OF THE INVENTION
According to one aspect of the invention, a semiconductor wafer including an NMOS device and a PMOS device. The NMOS device includes a first source, a first drain and a first body formed from a layer of semiconductor material, the first body disposed between the first source and the first drain. The NMOS device also includes a first gate formed over the first body and having a first gate electrode defining a first channel interposed between the first source and the first drain, the first gate electrode separated from the layer of semiconductor material by a high-K gate dielectric. The PMOS device includes a second source, a second drain and a second body formed from the layer of semiconductor material, the second body disposed between the second source and the second drain. The PMOS device also includes a second gate formed over the second body and having a second gate electrode defining a second channel interposed between the second source and the second drain, the second gate electrode separated from the layer of semiconductor material by a standard-K gate dielectric.
According to another aspect of the invention, a method of forming an NMOS device and a PMOS device on a semiconductor wafer. The method includes providing a layer of semiconductor material, forming the NMOS device and forming the PMOS device following NMOS device formation. Forming the NMOS device includes forming a layer of high-K dielectric material over the layer of semiconductor material; forming a first gate electrode for the NMOS device; and forming a first source and a first drain for the NMOS device from the layer of semiconductor material such that the first gate electrode defines a first channel interposed between the first source and the first drain. Forming the PMOS device includes encapsulating the NMOS device with a protective layer; forming a layer of standard-K dielectric material over the layer of semiconductor material; forming a second gate electrode for the PMOS device; and forming a second source and a second drain for the PMOS device from the layer of semiconductor material such that the second gate electrode defines a second channel interposed between the second source and the second drain.


REFERENCES:
patent: 6013553 (2000-01-01), Wallace et al.
patent: 6020024 (2000-02-01), Maiti et al.
patent: 6048769 (2000-04-01), Chau

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

MOSFETs with differing gate dielectrics and method of formation does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with MOSFETs with differing gate dielectrics and method of formation, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and MOSFETs with differing gate dielectrics and method of formation will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3029240

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.