Molding die for optical recording disk

Plastic article or earthenware shaping or treating: apparatus – Female mold and charger to supply fluent stock under... – With means to heat or cool

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C264S106000, C264S107000, C264S328160, C425S810000

Reexamination Certificate

active

06520764

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a novel molding die for an optical recording disk. Particularly, the invention relates to a technique for preventing or restraining a wedge-shaped deformation from being formed at an outer peripheral portion of an optical recording disk.
2. Description of the Related Art
In general, an optical recording disk, such as a CD, CD-R, or MO, is formed by forming a substrate through injection molding of a thermosetting resin and then, by carrying out processing of formation of a reflecting layer and the like.
When the optical recording disk (substrate) “a” is injection molded, there is a problem that a wedge-like deformation “b” is formed at an outer peripheral portion (see a solid line of FIG.
2
). It appears that the reason why such a deformation “b” is formed is as follows:
When a resin is cooled in a cavity of a molding die, upper and lower surfaces (main surfaces) and inner and outer peripheral surfaces are first cooled, and a shell is formed at the outside. Thereafter, as the inside is cooled, contraction continues, and plate thickness is decreased at portions except for the outer peripheral portion. At the outer peripheral portion, the previously formed shell resists in the upper and lower directions, so that the portion does not contract, or even if it contracts, the contraction is merely slight. Thus, when its section is seen, only the outer periphery is widened and comes to have a shape like a wedge (solid line in FIG.
2
).
There is a problem that when the foregoing wedge-shaped deformation is formed on the optical recording disk, a recording region can not be widened to a position close to the outer periphery.
SUMMARY OF THE INVENTION
An object of the present invention is therefore to prevent or restrain a wedge-shaped deformation from being formed at an outer peripheral portion of an optical recording disk.
In order to achieve the above object, in a molding die for an optical recording disk according to the invention, a cooling rate of an outer peripheral member coming in contact with a portion of the optical recording disk which becomes an outer peripheral surface is made slower than a cooling rate of an opposite member coming in contact with a portion of the optical recording disk which becomes a main surface.
Thus, in the molding die for the optical recording disk according to the invention, since a cooling rate of a portion of an injected molten resin coming in contact with the outer peripheral member, that is, a portion which becomes the outer peripheral surface of the optical recording disk becomes slower than a cooling rate of a portion coming in contact with the opposite member, formation of a shell at the outer peripheral portion becomes slower than that at the main surface portion. Thus, a wedge-shaped deformation is not formed or even if the deformation is formed, it becomes small.


REFERENCES:
patent: 5324473 (1994-06-01), Baresich
patent: 5893998 (1999-04-01), Kelley et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Molding die for optical recording disk does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Molding die for optical recording disk, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Molding die for optical recording disk will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3133816

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.