Sound signal analyzing device

Music – Instruments – Electrical musical tone generation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C084S661000

Reexamination Certificate

active

06525255

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates generally to a sound signal analyzing device and method which, on the basis of a sound signal, such as a voice signal or tone signal inputted via a microphone or the like, having undetermined pitch or note, analyzes sections appearing to have musical sounds and steady sections of the musical sounds so as to automatically analyze the notes (note names in a scale) and note lengths. The present invention also relates to a recording medium storing a program for implementing such operations.
Analyzed results by the present invention can be output as electronic musical staff information such as in the form of MIDI information, and therefore the present invention concerns a technique which permits automatic conversion, into a musical staff, of an audible melody input by human voices or the like.
In recent years, computer music performance systems, which use a computer to generate performance information such as MIDI information and reproduce performance sounds on the basis of the generated performance information, have been attracting people's attention as new musical sound performance devices. For input of various data to create the performance information, these computer music performance systems employ any of the real-time input method, step input method, numerical value input method, staff input method, etc.
In the real-time input method, information representative of player's actual operation on a keyboard or other performance operator, which is recorded on a tape recorder or the like, is converted into predetermined performance information on a real time basis. In the numerical value input method, performance information, such as pitches, lengths and strengths of sounds, is input in numerical value data directly from a computer keyboard. In the staff input method, simplified musical note symbols are put in a staff or stave visually presented on a display using function keys or mouse of a computer. In the step input method, musical notes are input using a MIDI keyboard or software keyboard and lengths of sounds are input using function keys or mouse of a computer.
Of the above-mentioned input methods, the real-time input method is advantageous in that it facilitates expression of human feelings and permits rapid input of performance information because the player's actual performance operation can be recorded directly as performance information. However, this method requires a high-level performance ability or experience on the part of players and hence is not suited to unexperienced players.
Thus, performance information generating devices have been proposed which allow even unexperienced players to readily input performance information while maintaining the advantages of the real-time input method. In the proposed performance information generating devices, a human voice or tone of a natural musical instrument (hereinafter collectively called “sounds”) is input directly via a microphone, so as to generate performance information on the basis of the input sound. Namely, by just inputting a single human voice or tone of a natural musical instrument, such as guitar, to the performance information generating device, it can generate MIDI signals in a simple manner and control MIDI equipment without using a MIDI keyboard or the like.
These known performance information generating devices are arranged to generate MIDI information, in response to pitch variation of the sound inputted via the microphone, by use of any one of the following approaches. The first approach is to detect a pitch variation in semitones, so as to generate only note information representative of the detected tone pitch. The second approach is to detect a pitch variation in semitones to generate note information of the detected tone pitch and also generate pitch-bend information (tone pitch varying information). The third approach is to generate pitch bend information variable over one octave above and below the input sound signal without detecting a note. Also, the performance information generating devices compare each input sound level with a predetermined reference value so that it generates note-on information when the input sound level has exceeded the reference value and generates note-off information when the input sound level has lowered below the reference value.
However, where pitch variation is detected in semitones as in the above-mentioned first and second approaches, many unintended note information (note-on or note-off information) would be undesirably generated as the input sound fluctuates in pitch slightly. In addition, the third approach where pitch varying information is generated as pitch bend information is not suited for particular purposes, such as staff making, although intended pitch variation can be faithfully by the pitch bend information. Also, where note information is generated in accordance with the input sound level, many unintended note information would be undesirably generated in response to slight fluctuation in the level.
Furthermore, in the real-time input method, it is necessary efficiently analyze each section where a sound appears to be actually present, because a plurality of sounds are input to a microphone in a time-series at optional time intervals. If, in this case, analysis of pitch and the like is constantly performed on the input sounds, the analysis would be undesirably conducted wastefully even during a time when there is no input sound. Thus, the analysis efficiency could be greatly enhanced by extracting, out of the input sound signals, only sections where sounds appear to be actually present (i.e., available sections) and conducting complicated analysis operations, such as a tone pitch analysis, only for the extracted available sections. Conventionally, such an available section is extracted by merely comparing the input sound signal level with a predetermined reference level, which, however, would present the problem that the available section extraction tends to be inaccurate when the input sound level slightly fluctuates, particularly in the vicinity of the reference level.
SUMMARY OF THE INVENTION
It is therefore an object of the present invention to provide a sound signal analyzing device and method which, even when an input sound from a microphone or the like fluctuates slightly in pitch or level, can effectively analyze each steady section of the input sound, other than the fluctuating section, corresponding to a note. More particularly, the present invention provides a technique for effectively analyzing steady sections of a series of input sounds to thereby accurately analyzing respective pitches of the individual sounds.
It is another object of the present invention to provide a sound signal analyzing device and method which, even when an input sound from a microphone or the like fluctuates slightly in pitch or level, can readily analyze an available section of the sound where a musical sound appears to be actually present.
It is still another object of the present invention to provide a performance information generating device which, even when an input sound from a microphone or the like fluctuates slightly in pitch or level, can reliably generate accurate note information corresponding to the pitch of the input sound.
According to a first aspect of the present invention, there is provided a sound signal analyzing device which comprises: an input unit that inputs an optional sound signal to the sound signal analyzing device; an arithmetic operating unit that calculates an average of every predetermined number of sample amplitude values of the sound signal inputted via the input unit and outputs the respective averages as a time-series of average level information; a first section detecting unit that, on the basis of the average level information outputted from the arithmetic operating unit, detects a first section of the inputted sound signal where there appears to be a musical sound; and a second section detecting unit that, on the basis of the sample amplitude values wit

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Sound signal analyzing device does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Sound signal analyzing device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Sound signal analyzing device will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3133815

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.