Moisture excluding air intake system for an internal...

Internal-combustion engines – Intake manifold

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C123S19800E

Reexamination Certificate

active

06453866

ABSTRACT:

BACKGROUND OF THE INVENTION
The invention relates to an air intake system for an internal combustion engine of a motor vehicle.
German patent application no. DE 196 13 860 discloses an air intake filter unit for a motor vehicle engine, which has an unfiltered space that is connected to intake lines with a main intake and a secondary intake. Furthermore, a closing device is provided, which can alternately close one intake line and open the other intake line. This closing device is moved by an actuating element such that the closing device closes the main intake and opens the secondary intake if the motor vehicle dips into water. This actuating element is operatively linked with a slide valve. The slide valve is arranged inside a pipe open at its lower end and is sealed with respect to said pipe. The slide valve is operatively linked with a permanent magnet. The closing device is operatively linked with an additional permanent magnet. The permanent magnet of the closing device is rotatably arranged in relation to the permanent magnet of the actuating element.
The drawback in this device is the substantial amount of space required for the pipe, which is arranged in the engine compartment. The pipe cannot be designed too small since otherwise the changeover point of the arrangement cannot be exactly defined. Furthermore, this mechanical switching arrangement responds only if the vehicle dips into standing water. Road spray does not cause sufficient pressure to be built up for switching, so that water can get into the intake system and impair engine function.
SUMMARY OF THE INVENTION
It is an object of the invention to provide an intake system that can be integrated into a small installation space.
Another object of the invention is to provide an air intake system which can prevent entry of snow, road spray or splashes of water into the intake tract.
These and other objects are achieved by the invention as described and claimed hereinafter.
The intake system according to the invention for an internal combustion engine of a motor vehicle has a first unfiltered air intake and a second unfiltered air intake. The two unfiltered air intakes are combined into a common line, which communicates with the internal combustion engine. The two unfiltered air intakes may also be joined directly in front of the internal combustion engine, so that each unfiltered air intake has its own components, e.g., its own filter element. Each unfiltered air intake consists of an opening through which air can flow into the intake system, and a line segment, which connects said opening with the line. The unfiltered air intakes can be sealed by one or several sealing elements, so that the air will flow either through the first unfiltered air intake or through the second unfiltered air intake into the line communicating with the internal combustion engine. The sealing element seals the respective air intake completely, so that air can flow into the line only through the unsealed unfiltered air intake. The sealing element can, for instance, be formed by a rotary body provided with corresponding openings. This rotary body unblocks the first unfiltered air intake in one end position and seals the first unfiltered air intake in a second end position.
The line communicating with the internal combustion engine guides the inflowing air either directly or indirectly to the internal combustion engine. If the air is indirectly guided to the internal combustion engine, the air can be pretreated, e.g., dried or cooled. If the air is directly guided to the internal combustion engine, no further component is required in the line.
The first unfiltered air intake is arranged in the motor vehicle at a location that is advantageous for air intake. A preferred location is the front area, since the air is pressed into the unfiltered air intake as a function of the vehicle speed, which improves the filling ratio of the cylinders. Furthermore, the air sucked into the front area is cooler than the air present in the engine compartment. In the front area, however, snow, ice, road spray and splashes or gushes of water can get into the first unfiltered air intake. Road spray is defined as air mixed with water droplets of any size. Road spray can, for instance, be splashed up from the road by a vehicle traveling ahead or be produced by rain. The term floodwater describes a larger amount of water, which occurs, for example, in the form of a surge when a river is crossed. The second unfiltered air intake is arranged at a location in the motor vehicle, which is unfavorable for air intake but is protected from road spray and splashes or gushes of water. Preferred locations for arranging this second unfiltered air intake can for instance be the engine compartment or the ventilation system.
To actuate the sealing element or valve member, an actuator is provided, which is connected to a control element. This actuating mechanism can, for instance, be an electric motor or a vacuum unit and can be actuated by means of the control element. The actuator executes a rotary or linear movement, which moves the sealing element into an end position and thereby either seals the first or the second unfiltered air intake. The control element is formed by a moisture sensor, which is equipped with a signal output to control the actuating mechanism. The moisture sensor can of course also be used for control.
The moisture sensor can be adjusted in such a way that it emits a signal to the actuating mechanism even in the presence of road spray, which already impairs the function of the internal combustion engine. This signal causes the first unfiltered air intake to be closed. In another adjustment of the moisture sensor, the signal to close the first unfiltered air intake is emitted only if the moisture sensor is surrounded by water. The signal of the moisture sensor can be transmitted to the actuating mechanism either directly or via an electronic unit, e.g., the engine control. As soon as the first unfiltered air intake is sealed by the sealing element, the second unfiltered air intake is opened, so that the internal combustion engine receives combustion air that is sucked in through the second unfiltered air intake.
In one advantageous embodiment of the invention, the valve member is a flap. The flap may, for instance, be circular, oval or rectangular, so that it blocks the second unfiltered air intake in a first position and the first unfiltered air intake in a second position. The flap may be arranged centrally on a flap shaft and moved by a rotary motion of the flap shaft. In other embodiments, the flap shaft is arranged in an edge area and thus permits an unfiltered air intake without interfering contours. To prevent water from penetrating into the first unfiltered air intake, particularly in case of immersion into a body of water, the flap may be provided with a circumferential seal. Also feasible are embodiments in which a first flap is arranged in the first unfiltered air intake and a second flap in the second unfiltered air intake, said two flaps communicating with one another. As soon as the first flap changes its position, the second flap is also moved, so that one unfiltered air intake is always open while the other unfiltered air intake is closed. The flaps can communicate mechanically, e.g., by means of a strut, or electronically by means of a signal emitted particularly by the moisture sensor.
According to one specific embodiment, the flap has two flap parts correspondingly connected with one another. These flap parts can be arranged at a defined angle contacting one another directly or they can be rigidly connected by means of connecting elements. A parallel mutual arrangement of the flap parts represents a special embodiment. However, the flap parts can also be spatially separate from one another so that they correspond with one another only via the actuating mechanism. The flap parts can, for instance, have a circular, oval or rectangular cross section, with one flap part sealing one unfiltered air intake. The flap parts can have a circumferen

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Moisture excluding air intake system for an internal... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Moisture excluding air intake system for an internal..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Moisture excluding air intake system for an internal... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2841038

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.