Modulation of IAPs for the diagnosis and antisense treatment...

Organic compounds -- part of the class 532-570 series – Organic compounds – Carbohydrates or derivatives

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C536S023100, C536S024300, C536S024310, C536S024330, C435S091100, C514S04400A

Reexamination Certificate

active

06300492

ABSTRACT:

BACKGROUND OF THE INVENTION
The invention relates to the diagnosis and treatment of cancer.
One way by which cells die is referred to as apoptosis, or programmed cell death. Apoptosis often occurs a normal part of the development and maintenance of health tissues. The process occurs so rapidly that it is difficult to detect. This may help to explain why the involvement of apoptosis in a wide spectrum of biological processes has only recently been recognized.
The apoptosis pathway is now known to play a critical role in embryonic development, viral pathogenesis, cancer, autoimmune disorders, and neurodegenerative disease. The failure of an apoptotic response has been implicated in the development of cancer, autoimmune disorders, such as lupus erythematosis and multiple sclerosis, and in viral infections, including those associated with herpes virus, poxvirus, and adenovirus.
Baculoviruses encode proteins that are termed inhibitors of apoptosis proteins (IAPs) because they inhibit the apoptosis that would otherwise occur when insect cells are infected by the virus. These proteins are thought to work in a manner that is independent of other viral proteins. The baculovirus IAP genes include sequences encoding a ring zinc finger-like motif (RZF), which is presumed to be directly involved in DNA binding, and two N-terminal domains that consist of a 70 amino acid repeat motif termed a BIR domain (Baculovirus IAP Repeat).
The role of apoptosis in cancer has only recently been appreciated. The identification of growth promoting “oncogenes” in the late 1970's gave rise to an almost universal focus on cellular proliferation that dominated research in cancer biology for many years. Long-standing dogma held that anti-cancer therapies preferentially targeted rapidly dividing cancer cells relative to “normal” cells. This explanation was not entirely satisfactory, since some slow growing tumors are easily treated, while many rapidly dividing tumor types are extremely resistant to anti-cancer therapies. Progress in the cancer field has now led to a new paradigm in cancer biology wherein neoplasia is viewed as a failure to execute normal pathways of programmed cell death. Normal cells receive continuous feedback from their neighbors through various growth factors, and commit “suicide” if removed from this context. Cancer cells somehow ignore these commands and continue inappropriate proliferation. Cancer therapies, including radiation and many chemotherapies, have traditionally been viewed as causing overwhelming cellular injury. New evidence suggests that cancer therapies actually work by triggering apoptosis.
Both normal cell types and cancer cell types display a wide range of susceptibility to apoptotic triggers, although the determinants of this resistance are only now under investigation. Many normal cell types undergo temporary growth arrest in response to a sub-lethal dose ol radiation or cytotoxic chemical, while cancer cells in the vicinity undergo apoptosis. This provides the crucial treatment “window” of appropriate toxicity that allows successful anti-cancer therapy. It is therefore not surprising that resistance of tumor cells to apoptosis is emerging as a major category of cancer treatment failure.
Compared to the numerous growth promoting oncogenes identified to date (<100) relatively few genes have been isolated that regulate apoptosis. The Bcl-2 gene was first identified as an oncogene associated with the development of follicular lymphomas. In contrast to all other oncogenes identified to date, Bcl-2 displays no ability to promote cell proliferation, and instead has been demonstrated to suppress apoptosis by a variety triggers. Elevated bcl-2 expression is associated with a poor prognosis in neuroblastoma, prostate and colon cancer, and can result in a multidrug resistant phenotype in vitro. Although the study of Bcl-2 has helped revolutionize cancer paradigms, the vast majority of human malignancies do not demonstrate aberrant Bcl-2 expression.
In contrast to the findings with bcl-2, mutation of the p53 tumor suppresser gene has been estimated to occur in up to 50% of human cancers and is the most frequent genetic change associated with cancer to date. The p53 protein plays a crucial role in surveying the genome for DNA damage. The cell type and degree of damage determines whether the cell will undergo growth arrest and repair, or initiate apoptosis. Mutations in p53 interfere with this activity, rendering the cell resistant to apoptosis by a wide range of cellular insults. Some progress has been made in understanding the molecular biology of p53, but many questions remain. p53 is known to function as a transcription factor, with the ability to positively or negatively regulate the expression of a variety of genes involved in cell cycle control, DNA repair, and apoptosis (including the anti-apoptotic Bcl-2 gene described above and the related proapoptotic gene bax). The drug resistant phenotype conferred by p53 alterations has been linked to Bcl-2/Bax regulation, but this correlation does not hold for most cancer types, leaving open the possibility that other critical genes regulated by p53 remain to be identified.
SUMMARY OF THE INVENTION
We have discovered that IAP and NAIP overexpression are associated with a wide range of cancer types including ovarian cancer, adenocarcinoma, lymphoma, and pancreatic cancer. In addition, we have found that nuclear localization fragmentation of the IAPs, and overexpression of the IAPs in the presence of p53 mutations correlate with a cancer diagnosis, a poor prognosis, and resistance to numerous chemotherapeutic cancer drugs. These discoveries provide diagnostic, prognostic, and therapeutic compounds and methods for the detection and treatment of proliferative diseases.
In the first aspect, the invention features a method of detecting cancer or an increased likelihood of cancer by detecting an increase IAP gene expression or protein expression in a cell from the mammal. In various embodiments, the detection may be performed by contacting with IAP or NAIP nucleic acid, or a portion thereof (which is greater than 9 nucleotides, and preferably greater than 18 nucleotides in length), with a preparation of nucleic acid from the cell; detecting levels of IAP or NAIP nucleic acid using quantitative nucleic acid amplification techniques; monitoring the levels of IAP or NAIP protein; or monitoring the levels of IAP or NAIP biological activity. Preferably, the cell is a cell from a mammal suspected of having a leukemia, a lymphoma, breast cancer, pancreatic cancer, melanoma, lung cancer, or ovarian cancer.
In one embodiment utilizing nucleic acid amplification for detection, the invention features characterization of a cellular IAP or NAIP nucleic acid content and levels by: (a) providing a sample of nucleic acid; (b) providing a pair of oligonucleotides having sequence homology to an IAP or NAIP nucleic acid; (c) combining the pair of oligonucleotides with the cellular sample under conditions suitable for polymerase chain reaction-mediated nucleic acid amplification; and (d) isolating the amplified IAP nucleic acid or fragment thereof The isolated nucleic acid may then be quantitated, sequenced, or otherwise characterized for the activity it imparts on the cell or related cells. In preferred embodiments, the amplification is carried out using a reverse-transcription polymerase chain reaction, for example, the RACE method.
In one embodiment using nucleic acid hybridization for detection, the invention features use of IAP or NAIP nucleic acid isolated according to the method involving: (a) providing a preparation of nucleic acid; (b) providing a detectably-labelled nucleotide sequence having homology to a region of an IAP or NAIP nucleic acid; (c) contacting the preparation of nucleic acid with the detectably-labelled nucleic acid sequence under hybridization conditions providing detection of nucleic acid having 50% or greater nucleotide sequence identity; and (d) identifying IAP or NAIP and characterizing nucleic acid by their association w

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Modulation of IAPs for the diagnosis and antisense treatment... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Modulation of IAPs for the diagnosis and antisense treatment..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Modulation of IAPs for the diagnosis and antisense treatment... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2587113

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.