Mobile conveyor for paving vehicles

Conveyors: power-driven – Conveying apparatus entirely supported by mobile ground... – Conveyor shiftably mounted on vehicle

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C198S317000, C198S303000

Reexamination Certificate

active

06688450

ABSTRACT:

BACKGROUND OF THE INVENTION
The invention relates to paving vehicles, and more particularly to mobile conveyor systems used with road paving vehicles.
Paving vehicles or “pavers” are well known and basically function to deposit, level and compact paving material, typically asphalt or concrete, onto a base surface (e.g., a road bed) so as to form a mat of paving material. Paving vehicles generally include a front-mounted hopper inside which a quantity of paving material is temporarily held. During a paving operation, the paving material is conveyed from the hopper to the rear of the vehicle and is deposited onto a base surface for leveling by a screed towed from the paver. As such, the quantity of material in the hopper is continuously consumed during the paving operation so that the hopper must be re-supplied with paving material. To keep the paver hopper supplied with paving material, one of the following methods is generally used.
First, a dump truck may be backed up to the front of the paver, allowing material to be directly dumped or deposited into the hopper from the bed or bin of the truck. Using a dump truck to periodically refill the paver hopper requires that the truck driver carefully backs up to the paver and adjusts the truck speed to match the paver travel speed in order to avoid colliding with the paver, such collisions generally causing ripples to form in the material mat. The second common approach is to use a second vehicle, commonly referred to as a “material transfer” vehicle, which travels forwardly of the paver during the entire paver operation and continuously conveys material from an on-board hopper to the paver hopper. The transfer vehicle hopper is then intermittently re-supplied with material by a dump truck, and any collisions between the transfer vehicle and the dump truck will generally not effect the quality of the pavement formed by the paver as the transfer vehicle and paver are not connected.
In general, such transfer vehicles include a chassis, a hopper mounted to the front of the chassis and a conveyor extending longitudinally from the hopper to the rear of the chassis. The conveyor has a inlet end disposed in the hopper and a discharge end extending over the rear of the chassis, the conveyor being inclined such that the discharge end is spaced higher than the inlet end. As such, when the material transfer vehicle is located forwardly of the paver, the discharge end of the transfer vehicle conveyor is located above the paver hopper, allowing paving material to be conveyed from the transfer vehicle hopper to fall-off the discharge end and into the paver hopper.
In certain applications, it is necessary to convey material from a transfer vehicle to a paver travelling parallel to the transfer vehicle, i.e., to a paver arranged offset to one side of the transfer vehicle rather than generally behind the vehicle. Examples of such situations are when the roadbed being paved is too soft for a dump truck to travel upon or when paving over a barrier, where a truck is too large to reach. To accomplish this, the transfer vehicle is either provided with a second, rotatable conveyor mounted on the vehicle chassis to the rear of the first or primary conveyor, or a separate conveyor assembly is towed from the rear of the transfer vehicle. In either case, the second conveyor, referred to as a “swing” conveyor, is able to rotate or swing to either side of the transfer vehicle to enable material to be transported to the offset paver. Although both of these methods of transferring paving material to an offset paver have been useful, each approach has certain limitations or drawbacks, as follows.
With a transfer vehicle having a second conveyor mounted directly on the chassis of the transfer vehicle, the transfer vehicle is more complex and generally requires the second conveyor to be used at all times, even when the paver is following directly behind the transfer vehicle in a standard paving operation. As such, the second, unnecessary conveying operation on the transfer vehicle results in wasted power consumption and excessive wear on the second conveyor. A separately towed conveyor has the advantage of being removable so that only the primary conveyor is used for a standard paving operation, but also has certain drawbacks. One limitation is that known towed conveyors generally either have only a limited range of rotation, such that the swing conveyor cannot reach a full 90° to either side, or a full rotation requires certain adjustment of mechanisms for rotating the conveyor, thereby requiring set-up time to adjust the swing conveyor as desired. Another drawback with towed conveyors is that the conveyor generally rolls upon two fixed or non-steerable wheels, such that the towed conveyor is unable to be follow the transfer vehicle when the vehicle is travelling a curved path, causing the swing conveyor to drift to one side of the vehicle and potentially moving the conveyor inlet end from beneath the primary conveyor discharge end as required.
Therefore, it would be desirable to provide a towed or “mobile” conveyor that overcomes the limitations of previously known towed conveyors.
BRIEF SUMMARY OF THE INVENTION
In a first aspect, the present invention is a mobile conveyor assembly for use with a construction vehicle. The vehicle has a wheel pivotable about a pivot axis and a steering actuator configured to pivot the wheel about the axis. The conveyor assembly comprises a carriage removably connectable with the vehicle and having a wheel pivotable about a pivot axis. A conveyor is mounted to the carriage. Further, a steering actuator is connected with the carriage wheel and is operably connectable with the vehicle actuator. The carriage actuator is configured to pivot the carriage wheel about the carriage wheel pivot axis in a first angular direction when the vehicle actuator pivots the vehicle wheel about the vehicle wheel pivot axis in a second, opposing angular direction.
In another aspect, the present invention is a construction vehicle assembly comprising a first frame having at least one wheel pivotable about a first pivot axis. A first steering actuator is configured to pivot the wheel about the axis. A second frame is removably connectable with the first frame and has at least one wheel pivotable about a second pivot axis. Further, a second steering actuator is operatively connected with the second frame wheel and operably connectable with the first steering actuator. The second steering actuator is configured to pivot the second frame wheel about the second pivot axis in a first angular direction when the first steering actuator pivots the first frame wheel about the first wheel pivot axis in a second, opposing angular direction.
In yet another aspect, the present invention is a conveyor assembly comprising a base having a pivot axis and a first circumferential bearing surface extending at least partially about the axis. A conveyor is rotatably connected with the base and has a second circumferential bearing surface slidably disposed against the first bearing surface. The second bearing surface is displaceable with respect to the first bearing surface along a first arcuate path having a first radius about the pivot axis. An actuator has an end connected with the base and is configured to rotate the conveyor about the axis such that the second bearing surface displaces along the first arcuate path as the actuator end displaces along a second arcuate path having a second radius about the axis. The first path radius is substantially greater than the second path radius such that a magnitude of the second bearing surface displacement is substantially greater than a magnitude of the actuator end displacement.
In an even further aspect, the present invention is a also conveyor assembly comprising a base having a pivot axis and a first, generally annular bearing body connected with the base and substantially centered about the axis. A conveyor has a second generally annular bearing body slidably engaged with the first bearing body to rotatably connect the convey

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Mobile conveyor for paving vehicles does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Mobile conveyor for paving vehicles, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Mobile conveyor for paving vehicles will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3355274

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.