Microwave and plasma-assisted modification of composite...

Plastic and nonmetallic article shaping or treating: processes – Laser ablative shaping or piercing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C264S167000, C264S446000, C264S448000, C264S483000

Reexamination Certificate

active

06514449

ABSTRACT:

CROSS-REFERENCE TO RELATED APPLICATIONS
Not Applicable.
FIELD OF THE INVENTION
The present invention relates to the modification of organic and inorganic fibers using plasma technology and microwave radiation. More specifically, the present invention relates to a method for producing an undulated surface on reinforcement fibers using microwave radiation and a non-uniform plasma energy.
BACKGROUND OF THE INVENTION
Advanced structural composites are reinforced polymers constructed using a matrix material and one or more reinforcement elements, such as fibers, filaments, or elongated particles. They are generally lightweight and possess superior strength and elasticity over most metals, and are often used as structural members in the aerospace industry and in high-tech space applications. Advanced structural composites are also used in other broader commercial applications where low weight and high mechanical strength materials are required, such as tennis rackets, fishing poles and golf clubs.
In general, the mechanical properties of the composite depend primarily upon the reinforcement elements selected and their ability to interact with the matrix material, usually a polymeric resin. The intrinsic mechanical properties of these two constituents are very different and, therefore, each constituent serves a different function. The function of the matrix material is to bind the reinforcement elements together to form a coherent structure, and to provide a medium for transferring applied loads from one element to another. The matrix material also provides the composite with its high temperature mechanical properties, transverse strength and moisture resistance, and is a key factor in providing toughness, shear strength, and oxidation and radiation resistance. The matrix material also strongly influences the fabrication process and the associated parameters for forming intermediate and final products from the composite material.
The reinforcement constituent, on the other hand, functions as the composite's load-bearing element. This is because the strength of the reinforcement material is generally many orders of magnitude greater than the matrix material. As a result, the matrix resin can generally tolerate higher levels of deformation than the reinforcement material. This higher tolerance allows the matrix system to distribute applied loads from one reinforcement element to another. For this reason, good bonds between the reinforcement elements and the matrix resin are extremely important for composites subjected to loads, particularly shear-critical loads.
If fibers are selected as the reinforcement element, a broad spectrum of fibers with variable mechanical properties can be used. For example, one commonly used fiber is the carbon fiber. Carbon fibers have a very high strength and/or stiffness when compared to polymeric resins. Other fibers include fibers made of glass, nylon, rayon, cellulose, aramide, polyethylene, polypropylene, silicon carbide and more.
Early studies with carbon and glass fiber have demonstrated that surface treatments can lead to improved interfacial adhesion and, thus, better mechanical composite properties. In the case of carbon fiber reinforcement, these surface treatments were targeted toward the improvement of the chemical bond between the carbon fiber and the epoxy matrix resin.
Fiber manufacturers have developed many fiber surface treatments to modify the characteristics of polymer surfaces and to enhance their adhesion to resin matrices. These technologies include anodic oxidation, electro-deposition, wet and dry oxidation, acid etching, low-energy plasma treatments, transcrystallinization, ion implantations, covalent bonding, etc. The basic principle of these technologies is to place chemically active groups on the surface of each fiber. These chemically active groups, in turn, react chemically with other groups in the surrounding matrix to form a strong mechanical bond and, thus, tie the fiber surface and the matrix together.
In low-energy plasma treatments, plasma generated photons and energy particles interact with the fiber surface, usually by free radical chemistry, to enhance the adhesive characteristics of the fiber. The use of low-energy plasma surface treatment is a well known technology, previously discussed at length by Werthelmer et al., “Plasma Treatment of Polymers to Improve Adhesion,”
Adhesion Promotion Techniques: Technological Applications,
139-174 (Mittal and Pizzi, ed., 1999); J. C. M. Peng et al., “Surface Treatment of Carbon Fibers,”
Carbon Fibers, Third Edition,
180-187 (J. B. Donnet et al., ed., 1998); L. H. Peebles, “Plasma Treatment,”
Carbon Fibers Formation, Structure, and Properties,
128-135 (1995); Listen et al., “Plasma Surface Modification of Polymers for Improved Adhesion: A Critical Review,”
J. Adhesion Sci. Technol.,
7:10:1091-1127 (1993); and J. Delmonte, “Surface Treatment of Carbon/Graphite Fibers,”
Technology of Carbon and Graphite Fiber Components,
189-191 (1981).
The use of a plasma surface treatment will generally result in a cleaning of the fiber's surface; an ablation, or etching, of material from the fiber's surface; a cross-linking or branching of the fiber's near-surface molecules; and a modification of the fiber's surface chemical structure. (See Werthelmer et al., supra at 145; and Listen et al., supra at 1096.) Each effect is always present to some degree, although to a variable extent depending upon the fiber substrate, the plasma gas chemistry, the plasma reactor design, and the overall operating parameters. Each of these effects also contributes in a synergistic manner to the enhancement of adhesion. For example, surface cleaning and ablation improves adhesion by removing organic contaminates and weak boundary layers from the fiber's surface. Cross-linking improves adhesion by providing a thin cross-linked layer of molecules on the fiber's surface which mechanically stabilizes the surface and serves as a barrier to inhibit low molecular weight molecules from diffusing into the fiber/matrix interface. Finally, chemical modification, the most dramatic and widely reported effect of plasma, improves adhesion by introducing to the fiber surface new chemical groups capable of interacting and covalently linking with the matrix resin to yield the strongest bonds.
It is also known that ablation may enhance the adhesive characteristics of some polymer surfaces by causing a change in the fiber's surface morphology. This change is usually a result of the cleaning of badly contaminated surfaces, or the removal of weak boundary surface layers formed during the fabrication process, or the treatment of filled or semi-crystalline materials. In particular, plasma removes amorphous polymers many times faster than crystalline polymers or inorganic fillers. Therefore, the over-treatment of polymer surfaces containing zones of amorphous polymers may result in the ablated amorphous zones appearing as random valleys or pits. This change is believed to have the unexpected effect of improving the mechanical interlocking of the polymer surface, while increasing the polymer's surface area available for chemical interactions.
Although it is known that some ablation of reinforcing fibers may improve composite properties, surface treatments for deliberately modifying the topography of fiber surfaces are very limited. This is because present methods generally only provide random ablative activity in those zones containing amorphous polymers, and often require over-treatment of the fiber in order to obtain the modification. Over-treatment, in turn, may also have the undesired effect of reducing the fiber's diameter, resulting in a thin reinforcing fiber having significantly weakened bulk properties. In addition, the etching or pitting of the fiber may result in cornered edges, which may further reduce the bulk properties of the fiber, or create air traps which may interfere with effective fiber/resin binding.
BRIEF SUMMARY OF THE INVENTION
The present invention is summ

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Microwave and plasma-assisted modification of composite... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Microwave and plasma-assisted modification of composite..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Microwave and plasma-assisted modification of composite... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3178720

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.