Wave transmission lines and networks – Coupling networks – Electromechanical filter
Reexamination Certificate
2006-08-28
2009-06-23
Summons, Barbara (Department: 2817)
Wave transmission lines and networks
Coupling networks
Electromechanical filter
C333S200000
Reexamination Certificate
active
07551043
ABSTRACT:
Micromechanical structures having at least one lateral capacitive transducer gap filled with a dielectric and method of making same are provided. VHF and UHF MEMS-based vibrating micromechanical resonators filled with new solid dielectric capacitive transducer gaps to replace previously used air gaps have been demonstrated at 160 MHz, with Q's˜20,200 on par with those of air-gap resonators, and motional resistances (Rx's) more than 8× smaller at similar frequencies and bias conditions. This degree of motional resistance reduction comes about via not only the higher dielectric constant provided by a solid-filled electrode-to-resonator gap, but also by the ability to achieve smaller solid gaps than air gaps. These advantages with the right dielectric material may now allow capacitively-transduced resonators to match to the 50-377Ω impedances expected by off-chip components (e.g., antennas) in many wireless applications without the need for high voltages.
REFERENCES:
patent: 6429755 (2002-08-01), Speidell et al.
patent: 6628177 (2003-09-01), Clark et al.
patent: 6846691 (2005-01-01), Hsu et al.
patent: 6856217 (2005-02-01), Clark et al.
patent: 6909221 (2005-06-01), Ayazi et al.
patent: 6985051 (2006-01-01), Nguyen et al.
patent: 7023065 (2006-04-01), Ayazi et al.
patent: 2006/0017523 (2006-01-01), Bhave et al.
patent: 2007/0103258 (2007-05-01), Weinstein et al.
U.S. Appl. No. 60/577,261, Bhave, et al. filed Jun. 4, 2004.
Wang, J., et al. 1.51-GHz Nanocrystalline Diamond Micromechanical Disk Resonator with Material-Mismatched Isolating Support, Technical Digest, IEEE Int. Micro Electro Mechanical Systems, Conf., Maastricht, The Netherlands, Jan. 2004, pp. 641-644.
Li, S.-S., et al., Micromechanical Hollow-Disk Ring Resonators, Technical Digest, IEEE Int. Micro Electro Mechanical Systems Conf., Maastricht, The Netherlands, Jan. 2004, pp. 821-824.
Wang, J., 1.156-GHz Self-Aligned Vibrating Micromechanical Disk Resonator, IEEE Transactions on Ultrasonics, Ferrorelectrics, and Frequency Control, vol. 51, No. 12, Dec. 2004, pp. 1607-1628.
Nguyen, C.T.-C., et al., Vibrating RF MEMS for Next Generation Wireless Applications, Proceedings, IEEE Custom Integrated Circuits Conf., Orlando, Florida, Oct. 2004, pp. 257-264.
Kaajakari, V., et al. Stability of Wafer Level Vacuum Encapsulated Single-Crystal Silicon Resonators, Digest of Technical Papers, Int. Conf. on Solid-State Sensors, Actuators, and Microsystems (Transducers '05), Seoul, Korea, Jun. 2005, pp. 916-919.
Kim, B., et al., Frequency Stability of Wafer-Scale Encapsulated MEMS Resonators, Digest of Technical Papers, Int. Conf. on Solid-State Sensors, Actuators and Microsystems (Transducers '05), Seoul, Korea, Jun. 2005, pp. 1965-1968.
Hsu, W.-T., et al., Stiffness-Compensated Temperature-Insensitive Micromechanical Resonators, Technical Digest, IEEE Int. Microelectro Mechanical Systems Conf., Las Vegas, Nevada, Jan. 2002, pp. 731-734.
Lin, Y.-W., et al., Series-Resonant VHF Micromechanical Resonator Reference Oscillators, IEEE Journhal of Solid-State Circuits, vol. 39, No. 12, pp. 2477-2491, Dec. 2004.
Piazza, G., et al., Low Motional Resistance Ring-Shaped Contour-Mode Aluminum Nitride Piezoelectric Micromechanical Resonators for UHF Applications, Technical Digest, IEEE Int. Micro Electro Mechanical Systems Conf., Miami Beach, Florida, Jan. 2005, pp. 20-23.
Li, S.-S., et al., Self-Switching Vibrating Micromechanical Filter Bank, Proceedings, IEEE Joint Int. Frequency Control/Precision Time & Time Interval Symposium, Vancouver, Canada, Aug. 2005.
Wong, A.-C., et al., Micromechanical Mixer-Filters (“Mixlers”), Journal of Microelectromechanical Systems, vol. 13, No. 1, Feb. 2004, pp. 100-112.
Bircumshaw, B., et al., The Radial Bulk Annular Resonator: Towards a 50 Omega RF MEMS Filter, Digest of Technical Papers, Int. Conf. on Solid-State Sensors, Actuators and Microsystems (Transducers '03), Boston, MA, Jun. 2003, pp. 875-878.
Xie, Y., et al., UHF Micromechanical Extensional Wine-Glass Mode Ring Resonators, Technical Digest, IEEE International Electron Devices Meeting, Washington, D.C., WA, Dec. 2003, pp. 953-956.
Demirci, M.U., et al., Mechanically Corner-Coupled Square Microresonator Array for Reduced Series Motional Resistance, Digest of Technical Papers, Int. Conf. on Solid-State Sensors, Actuators and Microsystems (Transducers '03) Boston, MA, Jun. 2003, pp. 955-958.
Bhave, S.A., et al., Silicon Nitride-on-Silicon Bar Resonator Using Internal Electrostatic Transduction, Digest of Technical Papers, Int. Conf. on Solid-State Sensors, Actuators and Microsystems (Transducers '05), Seoul, Korea, Jun. 2005, pp. 2139-2142.
Onoe, M., Contour Vibrations of Isotropic Circular Plates, J. Acoustical Society of America, vol. 28, No. 6, Nov. 1956, pp. 1158-1162.
Li Sheng-Shian
Lin Yu-Wei
Nguyen Clark T.-C.
Xie Yuan
Brooks & Kushman P.C.
Summons Barbara
The Regents of the University of Michigan
LandOfFree
Micromechanical structures having a capacitive transducer... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Micromechanical structures having a capacitive transducer..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Micromechanical structures having a capacitive transducer... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-4057673