Microelectromechanical capactive accelerometer and method of...

Etching a substrate: processes – Etching of semiconductor material to produce an article...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C216S039000

Reexamination Certificate

active

06402968

ABSTRACT:

TECHNICAL FIELD
This invention relates to capacitive accelerometers and, in particular, to microelectromechanical capacitive accelerometers and methods of making same.
BACKGROUND ART
Accelerometers are required in numerous applications, such as navigation, guidance, microgravity measurements, seismology and platform stabilization. Also, as they become manufacturable at low cost with small size, they attain a large potential consumer market in their application as a GPS-aid to obtain position information when the GPS receivers lose their line-of-sight with the satellites.
Some accelerometers are fabricated by surface micromachining or bulk micromachining. The surface micromachined devices are fabricated on a single silicon wafer. However, they generally have low sensitivity and large noise floor, and thus cannot satisfy requirements of many precision applications.
Some high resolution accelerometers are bulk micromachined and use multiple wafer bonding as part of their manufacturing process. This wafer bonding is a complex fabrication step, and hence results in lower yield and higher cost. Also, forming damping holes in the thick bonded wafers is difficult, and thus special packaging at a specified ambient pressure is typically needed to control the device damping factor. Finally, due to wafer bonding, these devices show higher temperature sensitivity and larger drift.
U.S. Pat. No. 5,345,824 discusses a monolithic capacitive accelerometer with its signal conditioning circuit fabricated using polysilicon proofmass and surface micromachining.
U.S. Pat. No. 5,404,749 discusses a boron-doped silicon accelerometer sensing element suspended between two conductive layers deposited on two supporting dielectric layers.
U.S. Pat. No. 5,445,006 discusses a self-testable microaccelerometer with a capacitive element for applying a test signal and piezoresistive sense elements.
U.S. Pat. No. 5,461,917 discusses a silicon accelerometer made of three silicon plates.
U.S. Pat. No. 5,503,285 discusses a method for forming an electrostatically force rebalanced capacitive silicon accelerometer. The method uses oxygen implantation of the proofmass to form a buried oxide layer and bonding of two complementary proofmass layers together. The implanted oxide layer is removed after bonding to form an air gap and release the proofmass.
U.S. Pat. No. 5,535,626 discusses a capacitive microsensor formed of three silicon layers bonded together. There is glass layer used between each two bonded silicon pairs.
U.S. Pat. No. 5,540,095 discusses a monolithic capacitive accelerometer integrated with its signal conditioning circuitry. The sensor comprises two differential sense capacitors.
U.S. Pat. No. 5,559,290 discusses a capacitive accelerometer formed of three silicon plates, attached together using a thermal oxide interface.
U.S. Pat. No. 5,563,343 discusses a lateral accelerometer fabricated of a single crystal silicon wafer.
U.S. Pat. No. 5,605,598 discloses a monolithic micromechanical vibrating beam accelerometer having a trimmable resonant frequency and method of making same.
The paper entitled “Advanced Micromachined Condenser Hydrophone” by J. Bernstein et al, Solid-State Sensor and Actuator Workshop, Hilton Head, S.C., June, 1994, discloses a small micromechanical hydrophone having capacitor detection. The hydrophone includes a fluid-filled variable capacitor fabricated on a monolithic silicon chip.
The paper entitled “High Density Vertical Comb Array Microactuators Fabricated Using a Novel Bulk/Poly-Silicon Trench Refill Technology”, by A. Selvakumar et al., Hilton Head, S.C., June 1994, discloses a fabrication technology which combines bulk and surface micromachining techniques. Trenches are etched and then completely refilled.
Numerous U.S. patents disclose electroplated microsensors such as U.S. Pat. Nos. 5,216,490; 5,595,940; 5,573,679; and 4,598,585.
Numerous U.S. patents disclose accelerometers such as U.S. Pat. Nos. 4,483,194 and 4,922,756.
U.S. Pat. No. 5,146,435 discloses an acoustic transducer including a perforated plate, a movable capacitor plate and a spring mechanism, all of which form a uniform monolithic structure from a silicon wafer.
SUMMARY OF THE INVENTION
An object of the present invention is to provide a microelectromechanical capacitive accelerometer wherein at least one of its conductive electrodes includes a layer which is stiff but thin relative to a proofmass of the accelerometer.
Another object of the present invention is to provide a microelectromechanical capacitive accelerometer formed from a single semiconductor wafer with a proofmass having a thickness substantially equal to the thickness of the wafer, controllable/small damping and large capacitance variation.
Yet another object of the present invention is to provide a microelectromechanical capacitive accelerometer having at least one conductive electrode formed as a stiffened film or layer which is thin by at least one order of magnitude relative to the thickness of a proofmass of the accelerometer.
Yet still another object of the present invention is to provide a low cost method for making a microelectromechanical capacitive accelerometer wherein at least one resulting conductive electrode is relatively thin but stiff and the resulting proofmass is relatively thick so as to provide high sensitivity in the capacitive accelerometer.
In carrying out the above objects and other objects of the present invention, a microelectromechanical capacitive accelerometer having an input axis is provided. The accelerometer includes at least one conductive electrode including a planar layer which is relatively thin along the input axis. The at least one conductive electrode is stiff so as to resist bending movement along the input axis. The accelerometer also includes a proofmass which is thicker than the planar layer by at least one order of magnitude along the input axis and a support structure for supporting the proofmass in spaced relationship from the at least one conductive electrode. The at least one conductive electrode and the proofmass have a substantially uniform narrow air gap therebetween. The conductive electrode and the proofmass form an acceleration-sensitive capacitor.
Preferably, the at least one electrode is sufficiently stiff to force-balance proof-mass displacement due to acceleration along the input axis without substantial bending of the at least one conductive electrode along the input axis.
Also, preferably, the proofmass is formed from a single silicon wafer having a predetermined thickness and wherein the thickness of the proofmass is substantially equal to the predetermined thickness.
In one embodiment, the planar layer is dimensioned and is formed of a material so that the at least one conductive electrode is stiff along the input axis. The planar layer may be a metallized planar layer.
The at least one conductive electrode may include a plurality of stiffeners extending from the planar layer along the input axis to stiffen the at least one conductive electrode. In a preferred embodiment, the stiffeners extend either away from or towards the proofmass from the planar layer. The proofmass includes a plurality of cavities when the stiffeners extend toward the proofmass. In this embodiment, the stiffeners are received within the cavities and the stiffeners and the proofmass have the substantially uniform narrow air gap therebetween.
The planar layer and the stiffeners may be formed of different materials or different forms of the same material such as a silicon semiconductor material.
The planar layer and the proofmass may be formed of different materials or different forms of the same material.
Further in carrying out the above objects and other objects of the present invention, a microelectromechanical capacitive accelerometer having an input axis is provided. The accelerometer includes a pair of spaced conductive electrodes. Each of the conductive electrodes includes a planar layer which is relatively thin along the input axis but is stiff to resist bending movement along the input axis. The acceler

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Microelectromechanical capactive accelerometer and method of... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Microelectromechanical capactive accelerometer and method of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Microelectromechanical capactive accelerometer and method of... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2965249

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.