Micro injecting device and a method of manufacturing

Incremental printing of symbolic information – Ink jet – Ejector mechanism

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C347S063000, C347S065000, C347S056000

Reexamination Certificate

active

06257706

ABSTRACT:

CLAIM OF PRIORITY
This application makes reference to, incorporates the same herein, and claims all benefits accruing under 35 U.S.C. § 119 from an application for MICRO INJECTING DEVICE AND A METHOD OF MANUFACTURING THE SAME earlier filed in the Korean Industrial Property Office on the 15
th
of October 1997 and there duly assigned Ser. No. 52822/1997.
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to processes and microdevices for the injection of liquids and, more particularly, to processes, structures and materials for the construction and use of devices for the injection of fluids into the body, or in injection of fluids such as lubricants into machinery.
2. Description of the Related Art
Micro-injection processes and processes, structures and materials for the construction and use of devices for the injection of fluids into the body, or in injection of fluids such as lubricants into machinery. With these processes a small device which is designed to provide a target, for example, printing paper, a human body, or a motor vehicle with a certain amount of a liquid phase of a substance, for example, ink, drug, or petroleum using the method in which a pulse of electric or thermal energy is applied to the above-mentioned liquid, changing the liquid's volume and thus supplying the liquid to a specific target.
Recent developments in electrical and electronic technology have led to rapid development of such micro-injection devices. These devices have applicability in a variety of applications, an a example being in ink-jet printing. Different from dot matrix printers, ink-jet printers are capable of printing with multiple colors and have advantages of reduced noise and enhanced printing quality. Ink-jet printers are currently gaining in popularity. Typically, an ink-jet printer includes a printer head with a plurality of nozzles each having a minute diameter. The printer head operates in response to application of electrical energy from an external source, heating the nozzles with the energy received, bubbling and expanding ink in the nozzles and spraying the ink onto a printing paper.
In one type of ink-jet printer head, the ink is driven from the ink chamber by an oscillating layer, which is a membrane separating the ink chamber from the chamber containing the working fluid. This type of inkjet printer head however, suffers from several problems. The oscillating layer, usually made of a uniform material such as nickel, undergoes considerable flexing in its operation. This causes strong tensile stress over the surface of the oscillating layer, and leads to tearing in the high stress regions. This tearing in turn can lead to folding of the oscillating layer, further degrading its performance. As a result, the oscillating layer can not respond to the vapor pressure changes in the working fluid chamber, and performance is greatly reduced.
Some examples of print heads of the contemporary art are shown, for example, in the following U.S. patents. U.S. Pat. No. 4,032,929, to Fischbeck et al., entitled High Density Linear Array Ink Jet Assembly shows an ink jet assembly with a flexible diaphragm driven by actuators. The diaphragm is notched to provide a hinge for the motion of the diaphragm. This diaphragm, or membrane, is not subjected to changes in temperature, however and would probably not be suitable for use in a thermal ink-jet print head. U.S. Pat. No. 4,480,259, to Kruger et al, entitled Ink Jet Printer with Bubble Driven Flexible Membrane has a flexible membrane that separates the ink chamber from the chamber containing the working fluid, and the membrane is driven by the expansion of the working fluid as the fluid is volatilized upon heating. It mentions a membrane of silicone rubber, which is subject to the tensile stresses described above. U.S. Pat. No. 5,684,519 to Matoba et al., entitled Ink Jet Head with Buckling Structure Body; describes an ink jet head with a plate that is mechanically buckled thereby pushing the ink. Such a plate is designed specifically for mechanical buckling, and is not designed to be driven by a working fluid in a thermal ink-jet print head. U.S. Pat. No. 5,666,141, to Matoba et al., entitled Ink Jet Head and a Method of Manufacturing Thereof describes an ink jet head with a plate which buckles upon electric heating, thereby driving the ink.describes an ink jet head with a plate that buckles upon heating to drive the ink. The plate described in this patent is designed to buckle with heat, providing the force which drives the ink, however, and the plate is not designed to be driven by the expansion of a working fluid. Moreover, the plate is not specifically designed to prevent stress to the plate. U.S. Pat. No. 5,719,604, to Inui et al., entitled Diaphragm Type Ink Jet Head Having a High Degree of Integration and a High Ink Discharge Efficiency also describes an ink jet head with a plate that buckles upon heating to drive the ink. The plate described in this patents is designed to buckle with heat, providing the force which drives the ink and the plate is not designed to be driven by the expansion of a working fluid. This plate is not specifically designed to prevent stress to the plate.
Based upon my observation of the art, I have discovered that what is needed, then, is an oscillating layer which is not susceptible to the stresses caused by flexing. Moreover, I have found that an improvement in the working response of the oscillating layer will also lead to improvement in performance of devices such as ink-jet print heads.
SUMMARY OF THE INVENTION
Therefore, it is an object of the present invention to provide an improved micro-injection device, and improved processes for making and using micro-injection devices.
It is another object to provide a micro-injection device with an oscillating layer that is resistant to damage due to the stress of flexing.
It is a still further object to provide a micro-injection device with an improved operating lifetime.
It is a yet further object to provide a micro-injection device with generally improved printing performance.
These and other objects may be achieved in the present invention by binarizing the structure of an oscillating layer, that is, making a flexible oscillating layer from a composite of layers defining two regions. One region is a portion of the oscillating layer having a high thermal expandibility, that is, a relatively high coefficient of expansion, and the other region is a portion having a high impact transmittability, that is, capable of delivering an impact to the ink. This provides a micro-injection device having a substrate, a protective layer formed on the substrate; a heating layer formed on the protective layer; an electrode layer formed in contact with the heating layer, conducting electrical signals; and a heating chamber barrier layer formed on the electrode layer so as to define a heating chamber in contact with the heating layer. An oscillating layer is formed on the heating chamber barrier layer to expand and oscillate according to changes in the volume of a liquid filled in the heating chamber; a liquid chamber barrier layer is formed on the oscillating layer to define a liquid chamber in contact with the oscillating layer; and a nozzle plate is formed on the ink chamber barrier layer to define a nozzle in contact with the ink chamber. The oscillating layer may be constructed with a first expansion layer having a recessed portion arranged over the top edge of the heating chamber, and a second expansion layer formed in the recessed portion, dispersing the stress on the first expansion layer.
Preferably, the first expansion layer has a larger mass per unit area than the second expansion layer; and the second expansion layer has a larger thermal expansion coefficient, that is, the change in volume with change in temperature, than the first expansion layer. Preferably also, the first expansion layer is constructed with a structure of overlying layers of a first organic layer; a first contact layer formed on the first organic layer

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Micro injecting device and a method of manufacturing does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Micro injecting device and a method of manufacturing, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Micro injecting device and a method of manufacturing will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2473263

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.