Methods of fabricating silicon carbide inversion channel...

Semiconductor device manufacturing: process – Having diamond semiconductor component

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C438S268000, C438S519000, C438S931000

Reexamination Certificate

active

06429041

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to methods of fabricating power devices and the resulting devices, and more particularly to silicon carbide power devices and methods of fabricating silicon carbide power devices.
BACKGROUND OF THE INVENTION
Power devices are widely used to carry large currents and support high voltages. Modem power devices are generally fabricated from monocrystalline silicon semiconductor material. One widely used power device is the power Metal Oxide Semiconductor Field Effect Transistor (MOSFET). In a power MOSFET, a control signal is supplied to a gate electrode that is separated from the semiconductor surface by an intervening insulator, which may be, but is not limited to, silicon dioxide. Current conduction occurs via transport of majority carriers, without the presence of minority carrier injection that is used in bipolar transistor operation. Power MOSFETs can provide an excellent safe operating area, and can be paralleled in a unit cell structure.
As is well known to those having skill in the art, power MOSFETs may include a lateral structure or a vertical structure. In a lateral structure, the drain, gate and source terminals are on the same surface of a substrate. In contrast, in a vertical structure, the source and drain are on opposite surfaces of the substrate.
One widely used silicon power MOSFET is the double diffused MOSFET (DMOSFET) which is fabricated using a double-diffusion process. In these devices, a p-base region and an n+ source region are diffused through a common opening in a mask. The p-base region is driven in deeper than the n+ source. The difference in the lateral diffusion between the p-base and n+ source regions forms a surface channel region. An overview of power MOSFETs including DMOSFETs may be found in the textbook entitled “Power Semiconductor Devices” by B. J. Baliga, published by PWS Publishing Company, 1996, and specifically in Chapter 7, entitled “Power MOSFET”, the disclosure of which is hereby incorporated herein by reference.
Recent development efforts in power devices have also included investigation of the use of silicon carbide (SiC) devices for power devices. Silicon carbide has a wide bandgap, a lower dielectric constant, a high breakdown field strength, a high thermal conductivity, and a high saturation electron drift velocity compared to silicon. These characteristics may allow silicon carbide power devices to operate at higher temperatures, higher power levels and with lower specific on-resistance than conventional silicon-based power devices. A theoretical analysis of the superiority of silicon carbide devices over silicon devices is found in a publication by Bhatnagar et al. entitled “Comparison of 6H-SiC, 3C-SiC and Si for Power Devices”, IEEE Transactions on Electron Devices, Vol. 40, 1993, pp. 645-655. A power MOSFET fabricated in silicon carbide is described in U.S. Pat. No. 5,506,421 to Palmour entitled “Power MOSFET in Silicon Carbide” and assigned to the assignee of the present invention.
Notwithstanding these potential advantages, it may be difficult to fabricate power devices including power MOSFETs in silicon carbide. For example, as described above, the double-diffused MOSFET (DMOSFET) is generally fabricated in silicon using a double diffusion process wherein the p-base region is driven in deeper than the n+ source. Unfortunately, in silicon carbide, the diffusion coefficients of conventional p- and n-type dopants are small compared to silicon, so that it may be difficult to obtain the required depths of the p-base and n+ source regions using acceptable diffusion times and temperatures. Ion implantation may also be used to implant the p-base and the n+ source. See, for example, “High-Voltage Double-implanted Power MOSFET's in 6H-SiC” by Shenoy et al., IEEE Electron Device Letters, Vol. 18, No. 3, March 1997, pp. 93-95. However, it may be difficult to control the depth and lateral extent of ion implanted regions. Moreover, the need to form a surface channel surrounding the source region may require the use of two separate implantation masks. It may then be difficult to align the p-base and the source regions to one another, thereby potentially impacting the device performance.
Methods of forming FETs in silicon carbide utilizing p-type implantation have also been described by, for example, commonly assigned U.S. Pat. application Ser. No. 09/093,207 entitled “Self-Aligned Method of Fabricating Silicon Carbide Power Devices by Implantation and Lateral Diffusion,” the disclosure of which is incorporated herein by reference as if set forth fully herein. Also, PCT International Publication No. WO98/02916 describes a method for producing a doped p-type channel region layer having on laterally opposite sides thereof doped n-type regions in a silicon carbide layer for producing a voltage-controlled semiconductor device. A masking layer is applied on top of a silicon carbide layer that is lightly n-doped. An aperture is etched in the masking layer extending to the silicon carbide layer. N-type dopants are implanted into an area of the silicon carbide layer defined by the aperture for obtaining a high doping concentration of n-type in the surface-near layer of the silicon carbide layer under the area. P-type dopants having a considerably higher diffusion rate in silicon carbide than the n-type dopants, are implanted into an area of the silicon carbide layer defined by the aperture to such a degree that the doping type of the surface-near layer is maintained. The silicon carbide layer is then heated at such a temperature that the p-type dopants implanted in the surface-near layer diffuse into the surrounding regions of the silicon carbide layer that is lightly n-doped, to such a degree that a channel region layer in which p-type dopants dominates is created laterally to the highly doped n-type surface-near layer and between this layer and lightly n-doped regions of the silicon carbide layer. As described in this International Application, the heating is carried out a temperature above 1650° C. and below 1800°.
As the above illustrates, the difficulties of implantation and diffusion in silicon carbide may make the production of power devices such as the DMOSFET. Accordingly, improvements may be needed in manufacturing processes and device structures of silicon carbide devices such as silicon carbide DMOSFETs.
SUMMARY OF THE INVENTION
In first embodiments, the present invention provides methods of fabricating silicon carbide devices by forming a first p-type silicon carbide epitaxial layer on an n-type silicon carbide substrate. At least one first region of n-type silicon carbide is formed extending through the first p-type silicon carbide epitaxial layer and to the n-type silicon carbide substrate so as to provide at least one channel region in the first p-type silicon carbide epitaxial layer. At least one second region of n-type silicon carbide is also formed adjacent and spaced apart from the first region of n-type silicon carbide. A gate dielectric is formed over the first region of n-type silicon carbide and at least a portion of the second region of n-type silicon carbide. A gate contact is formed on the gate dielectric. A first contact is also formed so as to contact a portion of the p-type epitaxial layer and the second region of n-type silicon carbide. A second contact is also formed on the substrate. Thus, a silicon carbide power device may be formed without the need for a p-type implant.
In particular embodiments of the present invention, the formation of at least one first region of n-type silicon carbide through the first p-type silicon carbide epitaxial layer and to the n-type silicon carbide substrate so as to provide at least one channel region in the first p-type silicon carbide epitaxial layer and at least one second region of n-type silicon carbide which is adjacent and spaced apart from the first region of n-type silicon carbide is carried out by implanting n-type dopants in the p-type silicon carbide epitaxial layer. Furthermore, in an al

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods of fabricating silicon carbide inversion channel... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods of fabricating silicon carbide inversion channel..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods of fabricating silicon carbide inversion channel... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2895289

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.