Methods of fabricating gallium nitride microelectronic...

Semiconductor device manufacturing: process – Formation of semiconductive active region on any substrate – On insulating substrate or layer

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C438S478000, C257S103000, C257S096000

Reexamination Certificate

active

06255198

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to microelectronic devices and fabrication methods, and more particularly to gallium nitride semiconductor devices and fabrication methods therefor.
BACKGROUND OF THE INVENTION
Gallium nitride is being widely investigated for microelectronic devices including but not limited to transistors, field emitters and optoelectronic devices. It will be understood that, as used herein, gallium nitride also includes alloys of gallium nitride such as aluminum gallium nitride, indium gallium nitride and aluminum indium gallium nitride.
A major problem in fabricating gallium nitride-based microelectronic devices is the fabrication of gallium nitride semiconductor layers having low defect densities. It is known that one contributor to defect density is the substrate on which the gallium nitride layer is grown. Accordingly, although gallium nitride layers have been grown on sapphire substrates, it is known to reduce defect density by growing gallium nitride layers on aluminum nitride buffer layers which are themselves formed on silicon carbide substrates. Notwithstanding these advances, continued reduction in defect density is desirable.
It also is known to produce low defect density gallium nitride layers by forming a mask on a layer of gallium nitride, the mask including at least one opening that exposes the underlying layer of gallium nitride, and laterally growing the underlying layer of gallium nitride through the at least one opening and onto the mask. This technique often is referred to as “Epitaxial Lateral Overgrowth” (ELO). The layer of gallium nitride may be laterally grown until the gallium nitride coalesces on the mask to form a single layer on the mask. In order to form a continuous layer of gallium nitride with relatively low defect density, a second mask may be formed on the laterally overgrown gallium nitride layer, that includes at least one opening that is offset from the underlying mask. ELO then again is performed through the openings in the second mask to thereby overgrow a second low defect density continuous gallium nitride layer. Microelectronic devices then may be formed in this second overgrown layer. ELO of gallium nitride is described, for example, in the publications entitled
Lateral Epitaxy of Low Defect Density GaN Layers Via Organometallic Vapor Phase Epitaxy
to Nam et al., Appl. Phys. Lett. Vol. 71, No. 18, Nov. 3, 1997, pp. 2638-2640; and
Dislocation Density Reduction Via Lateral Epitaxy in Selectively Grown GaN Structures
to Zheleva et al, Appl. Phys. Lett., Vol. 71, No. 17, Oct. 27, 1997, pp. 2472-2474, the disclosures of which are hereby incorporated herein by reference.
It also is known to produce a layer of gallium nitride with low defect density by forming at least one trench or post in an underlying layer of gallium nitride to define at least one sidewall therein. A layer of gallium nitride is then laterally grown from the at least one sidewall. Lateral growth preferably takes place until the laterally grown layers coalesce within the trenches. Lateral growth also preferably continues until the gallium nitride layer that is grown from the sidewalls laterally overgrows onto the tops of the posts. In order to facilitate lateral growth and produce nucleation of gallium nitride and growth in the vertical direction, the top of the posts and/or the trench floors may be masked. Lateral growth from the sidewalls of trenches and/or posts also is referred to as “pendeoepitaxy” and is described, for example, in publications entitled
Pendeo
-
Epitaxy: A New Approach for Lateral Growth of Gallium Nitride Films
by Zheleva et al., Journal of Electronic Materials, Vol. 28, No. 4, February 1999, pp. L5-L8; and
Pendeoepitaxy of Gallium Nitride Thin Films
by Linthicum et al., Applied Physics Letters, Vol. 75, No. 2, July 1999, pp. 196-198, the disclosures of which are hereby incorporated herein by reference.
ELO and pendeoepitaxy can provide relatively large, low defect gallium nitride layers for microelectronic applications. However, a major concern that may limit the mass production of gallium nitride devices is the growth of the gallium nitride layers on a silicon carbide substrate. Notwithstanding silicon carbide's increasing commercial importance, silicon carbide substrates still may be relatively expensive compared to conventional silicon substrates. Moreover, silicon carbide substrates generally are smaller than silicon substrates, which can reduce the number of devices that can be formed on a wafer. Moreover, although large investments are being made in silicon carbide processing equipment, even larger investments already have been made in conventional silicon substrate processing equipment. Accordingly, the use of an underlying silicon carbide substrate for fabricating gallium nitride microelectronic structures may adversely impact the cost and/or availability of gallium nitride devices.
SUMMARY OF THE INVENTION
The present invention provides methods of fabricating a gallium nitride microelectronic layer by converting a surface of a (111) silicon layer to 3C-silicon carbide. A layer of 3C-silicon carbide is then epitaxially grown on the converted surface of the (111) silicon layer. A layer of 2H-gallium nitride then is grown on the epitaxially grown layer of 3C-silicon carbide. The layer of 2H-gallium nitride then is laterally grown to produce the gallium nitride microelectronic layer.
In one embodiment, the silicon layer is a (111) silicon substrate, the surface of which is converted to 3C-silicon carbide. In another embodiment, the (111) silicon layer is part of a Separation by IMplanted OXygen (SIMOX) silicon substrate which includes a layer of implanted oxygen that defines the (111) layer on the (111) silicon substrate. In yet another embodiment, the (111) silicon layer is a portion of a Silicon-On-Insulator (SOI) substrate in which a (111) silicon layer is bonded to a substrate. Accordingly, the present invention can use conventional bulk silicon, SIMOX and SOI substrates as a base or platform for fabricating a gallium nitride microelectronic layer. By using conventional silicon technology, low cost and/or large area silicon substrates may be used and conventional silicon wafer processing systems also may be used. Accordingly, low cost and/or high volume production of gallium nitride microelectronic layers may be provided.
The surface of the (111) silicon layer preferably is converted to 3C-silicon carbide by chemically reacting the surface of the (111) silicon layer with a carbon containing precursor such as ethylene, to convert the surface of the (111) silicon layer to 3C-silicon carbide. The layer of 3C-silicon carbide then may be epitaxially grown on the converted surface using standard vapor phase epitaxial techniques for silicon carbide. Alternatively, the layer of 3C-silicon carbide may be grown directly on the (111) silicon layer, without the need for conversion. The epitaxially grown layer of 3C-silicon carbide may be thinned. Prior to growing the layer of gallium nitride, an aluminum nitride and/or gallium nitride buffer layer preferably is grown on the epitaxially grown layer of 3C-silicon carbide. The gallium nitride then is grown on the buffer layer, opposite the epitaxially grown layer of 3C-silicon carbide.
Lateral growth of the layer of 2H-gallium nitride may be performed by ELO wherein a mask is formed on the layer of 2H-gallium nitride, the mask including at least one opening that exposes the layer of 2H-gallium nitride. The layer of 2H-gallium nitride then is laterally grown through the at least one opening and onto the mask. A second, offset mask also may be formed on the laterally grown layer of 2H-gallium nitride and a second laterally grown layer of 2H-gallium nitride may be overgrown onto the offset mask. Lateral growth of the layer of 2H-gallium nitride also may be performed using pendeoepitaxial techniques wherein at least one trench and/or post is formed in a layer of 2H-gallium nitride to define at least one sidewall therein. The layer of 2H-gallium nitride then is late

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods of fabricating gallium nitride microelectronic... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods of fabricating gallium nitride microelectronic..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods of fabricating gallium nitride microelectronic... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2470593

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.