Etching a substrate: processes – Etching of semiconductor material to produce an article...
Reexamination Certificate
2005-11-01
2005-11-01
Olsen, Allan (Department: 1763)
Etching a substrate: processes
Etching of semiconductor material to produce an article...
C216S079000, C438S048000
Reexamination Certificate
active
06960305
ABSTRACT:
A method for making a spatial light modulator is disclosed, that comprises forming an array of micromirrors each having a hinge and a micromirror plate held via the hinge on a substrate, the micromirror plate being disposed in a plane separate from the hinge and having a hinge made of a transition metal nitride, followed by releasing the micromirrors in a spontaneous gas phase chemical etchant. Also disclosed is a projection system that comprises such a spatial light modulator, as well as a light source, condensing optics, wherein light from the light source is focused onto the array of micromirrors, projection optics for projecting light selectively reflected from the array of micromirrors onto a target, and a controller for selectively actuating the micromirrors in the array.
REFERENCES:
patent: 3511727 (1970-05-01), Hays
patent: 4190488 (1980-02-01), Winters
patent: 4310380 (1982-01-01), Flamm et al.
patent: 4498953 (1985-02-01), Cook et al.
patent: 5439553 (1995-08-01), Grant et al.
patent: 5504614 (1996-04-01), Webb et al.
patent: 5726480 (1998-03-01), Pister
patent: 5835256 (1998-11-01), Huibers
patent: 5998816 (1999-12-01), Nakaki et al.
patent: 6005706 (1999-12-01), Hwang
patent: 6051503 (2000-04-01), Bhardwaj
patent: 6061166 (2000-05-01), Furlani et al.
patent: 6115172 (2000-09-01), Jeong
patent: 6162367 (2000-12-01), Tai et al.
patent: 6172796 (2001-01-01), Kowarz et al.
patent: 6197610 (2001-03-01), Toda
patent: 6204080 (2001-03-01), Hwang
patent: 6233087 (2001-05-01), Hawkins et al.
patent: 6238581 (2001-05-01), Hawkins et al.
patent: 6252697 (2001-06-01), Hawkins et al.
patent: 6268952 (2001-07-01), Godil et al.
patent: 6290864 (2001-09-01), Patel et al.
patent: 6355181 (2002-03-01), McQuarrie
patent: 6396619 (2002-05-01), Huibers et al.
patent: 6409876 (2002-06-01), McQuarrie et al.
patent: 6436229 (2002-08-01), Tai et al.
patent: 6500356 (2002-12-01), Goto et al.
patent: 6576489 (2003-06-01), Leung et al.
patent: 6813059 (2004-11-01), Hunter et al.
patent: 2001/0002663 (2001-06-01), Tai et al.
patent: 2001/0024325 (2001-09-01), Kowarz et al.
patent: 2002/0015215 (2002-02-01), Miles
patent: 2002/0033229 (2002-03-01), Lebouitz et al.
patent: 2002/0047172 (2002-04-01), Reid
patent: 2002/0121502 (2002-09-01), Patel et al.
patent: 2002/0126387 (2002-09-01), Ishikawa et al.
patent: 2002/0163051 (2002-11-01), Gopal et al.
patent: 2002/0164879 (2002-11-01), Leung et al.
patent: 2002/0185699 (2002-12-01), Reid
patent: 2002/0195418 (2002-12-01), Kowarz et al.
patent: 2002/0196524 (2002-12-01), Huibers et al.
patent: 2003/0054588 (2003-03-01), Patel et al.
patent: 2003/0071015 (2003-04-01), Chinn et al.
patent: 2003/0077878 (2003-04-01), Kumar et al.
patent: 2003/0124848 (2003-07-01), Chinn et al.
patent: 2003/0166342 (2003-09-01), Chinn et al.
patent: 2003/0219986 (2003-11-01), Rattner et al.
patent: 2004/0027701 (2004-02-01), Ishikawa
patent: 2004/0156089 (2004-08-01), Doan et al.
patent: 2004/0191937 (2004-09-01), Patel et al.
patent: 0704884 (1996-04-01), None
patent: 0822582 (1998-02-01), None
patent: 0822584 (1998-04-01), None
patent: 0878824 (1998-11-01), None
patent: 0878824 (2000-01-01), None
patent: 1982/57098679 (1982-06-01), None
patent: 1983/58130529 (1983-08-01), None
patent: 1985/60057938 (1985-04-01), None
patent: 1986/61053732 (1986-03-01), None
patent: 1986/61134019 (1986-06-01), None
patent: 1986/61181131 (1986-08-01), None
patent: 1986/61187238 (1986-08-01), None
patent: 1986/61270830 (1986-12-01), None
patent: 1987/62071217 (1987-04-01), None
patent: 1988/63155713 (1988-06-01), None
patent: 1989/01208834 (1989-08-01), None
patent: 1989/10217921 (1989-08-01), None
patent: 1990/02250323 (1990-10-01), None
patent: 1991/03012921 (1991-01-01), None
patent: 1992/04096222 (1992-03-01), None
patent: 1995/07029823 (1995-01-01), None
patent: 1997/09251981 (1997-09-01), None
patent: 1998/10313128 (1998-11-01), None
patent: 1998/10317169 (1998-12-01), None
patent: WO-98/32163 (1998-07-01), None
patent: WO-99/49506 (1999-09-01), None
Aliev et al., “Development of Si(100) Surface Roughness at the Initial Stage of Etching in F2 and XeF2 Gases Ellipsometric Study”, Surface Science 442 (1999), pp. 206-214.
Glidemeister, J.M., “Xenon Difluoride Etching System” (Nov. 17, 1997).
Habuka et al., “Dominant Overall Chemical Reaction in a Chlorine Trifluoride-Silicon-Nitrogen System at Atmospheric Pressure”, Japan Journal of Applied Physics vol. 38 (1999), pp. 6466-6469.
Hecht et al., “A Novel X-ray Photoelectron Spectroscopy Study of the AI/SiO2 Interface”, J. Appl. Phys. vol. 57 (Jun. 15, 1985), pp. 5256-5261.
Houle, F.A., “Dynamics of SiF4 Desorption During Etching of Silicon by XeF2”, IBM Almaden Research Center (Apr. 15, 1987), pp. 1866-1872.
Flamm et al., “XeF2 and F-Atom Reactions with Si: Their Significance for Plasma Etching”, Solid-State Technol. 26, 117 (1983).
Ibbotson et al., “Plasmaless Dry Etching of Silicon with Fluorine-containing Compounds”, J. Appl. Phys. vol. 56 No. 10 (Nov. 1984), pp. 2939-2942.
Ibbotson et al., “Comparison of XeF2 and F-atom Reactions with Si and SiO2”, Applied Physics Letter, vol. 44, 1129 (1984).
Streller et al., “Selectivity in Dry Etching of Si (100) and XeF2 and VUV Light”, Elsevier Science B.V., Applied Surface Science vol. 106 (1996), pp. 341-346.
Vugts et al., “Si/XeF2 Etching: Temperature Dependence”, J. Vac. Sci. Technol. A 14(5) (Sep./Oct. 1995), pp. 2766-2774.
Winters, H.F., “Etch Products from the Reaction of XeF2 with SiO2, SiO3, Si3N4, SiC, and Si in the Presence of Ion Bombardment”, J. Vac. Sci. Technol. B 1(4) (Oct./Dec. 1983), pp. 927-931.
Kurt Williams, Etch Rates for Micromachining Processing-Part II, 2003 IEEE, pp. 761-778, Journal of Microelctromechanical Systems, vol. 12, No. 6, Dec. 2003.
Winters et al., “The Etching of Silicon with XeF2 Vapor”, Appl. Phys. Letter, vol. 34(1) (Jan. 1, 1979), pp. 70-73.
XACTIX, Inc., Marketing Brochure (Jun. 27, 1999).
“Xenon Difluoride Isotropic Etch System: Seeing is Believing”, Surface Technology Ltd. brochure, Newport, UK (date unknown).
Chu et al., “Controlled Pulse-Etching with Xenon Difluoride”, International Solid State Sensors and Actuators Conference (Transducers '97), Chicago, IL, vol. 1 (Jun. 16-19, 1997), pp. 665-668 (abstract only).
Bassom et al., “Modeling and Optimizing XeF2-enhanced FIB Milling of Silicon”, 25th International Symposium for Testing and Failure Analysis, Santa Clara, CA (Nov. 14-18, 1999), pp. 255-261 (abstract only).
Kohler et al., “Fabrication of Microlenses by Plasmaless Isotropic Etching Combined with Plastic Moulding”, Sens, Actuators A, Phys. (Switzerland), vol. A53, No. 1-3 (May 1996), pp. 361-363 (abstract only).
Chan et al., “Gas Phase Pulse Etching of Silicon for MEMS with Xenon Difluoride”, Engineering Solutions for the Next Millenium: 1999 IEEE Canadian Conference on Electrical and Computer Engineering, Edmonton, Alberta, vol. 3 (May 9-12, 1999), pp. 1637-1642 (abstract only).
Chang et al., “Gas-Phase Silicon Micromachining with Silicon Difluoride”, Proceedings of the SPIE—The International Socity for Optical Engineering, vol. 2641 (1995), pp. 117-128 (abstract only).
Sebel et al., “Reaction Layer Dynamics in Ion-Assisted Si/XeF2 Etching: Temperature Dependence”, J. Vac. Sci. Technol. A, Vac. Surf. Films, vol. 18, No. 6, (Nov. 2000), pp. 2759-2769 (abstract only).
Sebel et al., “Silicon Etch Rate Enhancement by Traces of Metal”, J. Vac. Sci. Technol. A, Vac. Surf. Films, vol. 17, No. 3, (May/Jun. 1999), pp. 755-762 (abstract only).
Sugano et al., “Study on XeF2 Pulse Etching Using Wagon Wheel Pattern”, Proceedings of the 1999 International Symposium on Micromechantronics and Human Science: Towards the New Century, Nagoya, Japan (Nov. 23-26, 1999), pp. 163-167 (abstract only).
Wang et al., “Gas-Phase Silicon Etching with Bromine Trifluor
Doan Jonathan C.
Huibers Andrew G.
Patel Satyadev R.
Reid Jason S.
Muir Gregory R.
Olsen Allan
Reflectivity, Inc
LandOfFree
Methods for forming and releasing microelectromechanical... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Methods for forming and releasing microelectromechanical..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods for forming and releasing microelectromechanical... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3483560