Methods for evaluating advanced wafer drying techniques

Cleaning and liquid contact with solids – Processes – Combined

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C134S002000, C134S013000, C134S025100, C134S026000, C134S034000, C250S459100, C250S458100, C252S301190

Reexamination Certificate

active

06521050

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to wet cleaning of substrates during semiconductor wafer fabrication, and more particularly, to techniques for evaluating the effectiveness of techniques and apparatus used to dry substrates following a wet clean procedure.
2. Description of the Related Art
In the fabrication of semiconductor devices, there is a need to perform wet cleaning of substrates at various stages of the fabrication process. Typically, integrated circuit devices are in the form of multi-level structures. At the substrate level, transistor devices having diffusion regions are formed over and into silicon substrates. In subsequent levels, interconnect metallization lines are patterned and electrically connected to the transistor devices to define the desired functional device. As is well known, patterned conductive layers are insulated from other conductive layers by dielectric materials, such as silicon dioxide. At each metallization level there is a need to planarize metal or associated dielectric material. Without planarization, fabrication of additional metallization layers becomes substantially more difficult due to the higher variations in the surface topography. In some applications, metallization line patterns are formed in the dielectric material, and then metal CMP operations are performed to remove excess metallization.
Following each CMP operation, a wet clean of the substrate is performed. The wet clean is designed to wash away any by-products of the fabrication process, remove contaminants, and to achieve and maintain the necessary degree of cleanliness essential to proceed to a subsequent fabrication operation. As transistor device structures become smaller and more complex, the precision required to achieve and maintain structure definition demands exacting standards of cleanliness be maintained in all process operations. If a wet clean is incomplete or ineffective, or if a post-wet clean drying is incomplete or ineffective, then unacceptable residue or contaminants are introduced into the processing environment.
Rinsing and drying techniques, methods, and apparatus are plentiful and known in the art, and incorporate such operations as rinsing and scrubbing, immersion, and the application of thermal, mechanical, chemical, electrical, or sonic energy and the like to remove or displace water and dry the substrate. While some scrub and rinse operations may employ acids or bases for vigorous interaction with fabrication byproducts, deionized water (DIW) is commonly used to perform a final rinse before the desired drying technique is performed.
One common drying technique is known as spin, rinse and dry (SRD). SRD uses mechanical, centrifugal, energy to rid the substrate of water by spinning the substrate until dry.
FIG. 1
shows a typical prior art SRD process and apparatus
10
. An SRD apparatus
10
typically includes a substrate mounting plate
18
within a bowl
12
and mounted on a shaft
20
that is configured to rotate and thus spin the substrate
14
. The substrate
14
is attached to the substrate mounting plate
18
with mounting pins
16
configured to maintain the substrate
14
in a horizontal orientation, firmly affixed to the substrate mounting plate
18
so that rapid rotation of the substrate mounting plate
18
spins the substrate
14
and forces the water from the substrate
18
. DIW
26
is typically dispensed from a nozzle
24
which is positioned over the substrate
14
and connected to a DIW supply
22
.
The SRD process essentially includes applying DIW or rinsing
28
, and spinning the substrate dry
30
. In some configurations, the substrate
14
is rinsed
28
while spinning to ensure thorough rinsing
28
, and then spun to dry
30
. The spinning of the substrate
14
uses centrifugal energy to force water from the substrate
14
surface, and can be enhanced with the introduction of an inert gas such as Nitrogen or an inert gas vapor to displace any water that is not completely removed by spinning. Additional variations include heating the DIW, heating the SRD environment, heating the inert gas, and the like.
Another common drying technique is known as a Marangoni technique. Marangoni drying (not shown) typically includes using a chemical drying fluid or solvent such as isopropyl alcohol (IPA) to introduce favorable surface tension gradients facilitating removal of water from the surface of a wafer. Variations of the Marangoni technique also include the introduction of an inert gas such as Nitrogen as a carrier gas for IPA vapor delivery.
Additionally, another known drying technique involves the replacement of DIW with another volatile compound.
Whichever method or combination of methods is employed to dry a substrate, effective drying is essential to continued fabrication. As is known, contaminates can damage or destroy features that are formed in single dies, groups of dies, or entire wafers.
Any water remaining of the surface of a substrate after the drying process evaporates. Water allowed to evaporate introduces contaminants as evidenced by the water marks or stains caused by residual solids from evaporated water. It is therefore desirable to evaluate drying techniques used, recognizing that the techniques are more or less effective depending on such factors as the type of substrate being processed, fabrication materials, processing environment, and the like. Common methods of evaluating the effectiveness of selected drying techniques include visual inspection, electrical analysis and mass analysis.
Visual inspection of substrates is generally effective for blanket film substrates as the surface of the substrate is smooth and easily inspected for remaining water marks. Patterned substrates, however, are difficult to inspect visually as water can be trapped in patterned features and not visible. Visual inspection is therefore ineffective for drying technique evaluation of patterned substrates.
Electrical analysis can be effective for specially prepared test structures after subjecting such structures to an electrical test such a TVS and the like. Such electrical analysis, however, is costly.
Mass analysis is a comparative evaluation of wet and dry substrates. Typically, mass analysis includes an initial drying operation followed by weighing the substrate and then, after some time, re-weighing the substrate to determine if a change in mass has or has not occurred. Although mass analysis is not subject to the same limitations presented by visual inspection and electrical analysis in the evaluation of patterned substrates, mass analysis is cumbersome, time consuming, and far less accurate than other methods.
What is needed is a method to evaluate advanced drying techniques used in the fabrication of semiconductor substrates. The method should include a way to accurately and precisely analyze a substrate that has been dried for any trace amount of residual contamination, and to use the results of the analysis to select, modify, or adjust the drying technique to ensure complete substrate drying in a contaminate-free environment.
SUMMARY OF THE INVENTION
Broadly speaking, the present invention fills these needs by providing a method for evaluating drying techniques. The method of evaluation includes applying a compound to a final rinse following a wet clean of a substrate, drying the wafer in accordance with the selected drying technique, and then analyzing any residual compound on the substrate after the drying method is completed. The present invention can be implemented in numerous ways, including as a process, an apparatus, a system, a device, or a method. Exemplary embodiments of the present invention are described below.
In accordance with one aspect of the invention, a method for analyzing the effectiveness of a substrate drying operation is provided. The method includes applying a fluid solution that contains an analytically detectable compound to a surface of a substrate. The surface of the substrate has features defined therein. The method further includes spinning

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods for evaluating advanced wafer drying techniques does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods for evaluating advanced wafer drying techniques, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods for evaluating advanced wafer drying techniques will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3129908

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.