Methods and structures for gold interconnections in integrated c

Active solid-state devices (e.g. – transistors – solid-state diode – Combined with electrical contact or lead – Of specified material other than unalloyed aluminum

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

257743, 257522, H01L 2348, H01L 2352, H01L 2940

Patent

active

059201215

ABSTRACT:
A typical integrated-circuit fabrication requires interconnecting millions of microscopic transistors and resistors with aluminum wires. Making the aluminum wires flush, or coplanar, with underlying insulation requires digging trenches in the insulation, and then filling the trenches with aluminum to form the aluminum wires. Trench digging is time consuming and costly. Moreover, aluminum has higher electrical resistance than other metals, such as gold. Accordingly, the invention provides a new "self-trenching" or "self-planarizing" method of making coplanar gold wires. Specifically, one embodiment forms a first layer that includes silicon and germanium; oxidizes a region of the first layer to define an oxidized region and a non-oxidized region; and reacts gold with the non-oxidized region. The reaction substitutes, or replaces, the non-oxidized region with gold to form gold wires coplanar with the first layer. Another step removes germanium oxide from the oxidized region to form a porous insulation having a very low dielectric constant, thereby reducing capacitance. Thus, the present invention not only eliminates the timing-consuming, trench-digging step of conventional methods, but also reduces resistance and capacitance which, in turn, enable faster, more-efficient integrated circuits.

REFERENCES:
patent: 4702941 (1987-10-01), Mitchell et al.
patent: 4959705 (1990-09-01), Lemnious
patent: 5148260 (1992-09-01), Inoue et al.
patent: 5187560 (1993-02-01), Yoshida et al.
patent: 5324684 (1994-06-01), Kermani et al.
patent: 5341016 (1994-08-01), Prall et al.
patent: 5371035 (1994-12-01), Pfiester et al.
patent: 5470801 (1995-11-01), Kapoor et al.
patent: 5510645 (1996-04-01), Fitch et al.
patent: 5563448 (1996-10-01), Lee et al.
patent: 5757072 (1998-05-01), Gorowitz et al.
patent: 5801444 (1998-09-01), Aboelfotah et al.
Berezhnoi, A., Silicon and its Binary Systems, Consultants Bureau, New York, 84, (1960).
Fukuda, Y., et al., "A New Fusible-Type Programmable Element Composed of Aluminum and Polysilicon", IEEE Trans. on Electron Devices, ED-33, 250-253, (Feb., 1986).
Hanna, J., et al., "Early Stage of Polycrystalline Growth of Ge and SiGe by Reactive Thermal CVD from GeF(4) and Si(2)H(6)", Materials Res. Soc. Symp. Proc., 358, Boston, MA, 877-881, (Nov./Dec., 1994).
Hansen, P., Constitution of Binary Alloys, McGraw-Hill, New York, 103, (1958).
Hiraki, A., et al., "Formation of Silicon Oxide over Gold Layers on Silicon Substrates", J. Applied Physics, 43, 3643-3649, (Sep., 1972).
Hiraki, A., et al., "Low-Temperature Migration of Silicon in Metal Films on Silicon Substrates Studiedby Backscattering Techniques", J. Vacuum Science and Tech., 9, 155-158, (Jan./Feb., 1972).
Horie, H., et al., "Novel High Aspect Ratio Aluminum Plug for Logic/DRAM LSI's Using Polysilicon-Aluminum Substitute", Technical Digest: IEEE Int. Electron Devices Meeting, San Francisco, CA, 946-948, (1996).
Hurley, P., et al., "Low Temperature Plasma Oxidation of Polycrystalline Silicon", Proc. 7th European Conf. on Insulating Films on Semiconductors: Contributed Papers, Section 5, IOP Publishing Ltd., 235-238, (1991).
King, T., et al., "Deposition and Properties of Low-Pressure Chemical-Vapor Deposited Polycrystalline Silicon-Germanium Films", J. Electrochemical Society, 141, 2235-2241, (Aug. 1994).
Lee, D.H., et al., "Gate Oxide Integrity (GOI) of MOS transistors with W/TiN stacked gate", 1996 Symposium on VLSI Technology Digest of Technical Papers, 208-209, (1996).
Li, C., et al., "Low Temperature Heteroepitaxial Growth of Si(1-x)Ge(x)-on-Si by Photo-Enhanced Ultra High Vacuum Chemical Vapor Chemical Vapor Deposition Using Si(2)H(6) and Ge(2)H(6)", J. Electronic Materials, 24, 875-884, (Jul. 1995).
Li, P., et al., "Formation of Stoichiometric SiGe Oxide by Electron Cyclotron Resonance Plasma", Appl. Phys. Lett, 60, 3265-3267, (Jun. 1992).
Lyman, T.e., "Metallography, Structure and Phase Diagrams", Metals Handbook, 8, American Society for Metals; Metals Park, Ohio, 253, 256, 260, 263,, (1989).
Moffatt, W., The Handbook of Binary Phase Diagrams, General Electric Company, pub., vol. 1, 3/84, (1978).
Mohajerzadeh, S., et al., "A Low Energy Ion Beam Assisted Deposition Technique for Realizaing iso-type SiGe/Si hetero-interface diodes", Thin Solid Films, 283, 182-187, (1996).
Mohajerzadeh, S., et al., "A Low-Temperature Ion Vapor Deposition Technique for Silicon and Silicon-Germanium Epitaxy", Canadian J. Physics, 74, S69-S73, (1996).
Mohri, M., et al., "Effect of SiF(4)/SiH(4)/H(2) Flow Rates on Film Properties of Low-Temperature Polycrystalline Silicon Films Prepared by Plasma Enchanced Chemical Vapor Deposition", IEICE Transactions on Electronics, E77-C, 1677-1684, (Oct. 1994).
Mukhopadhyay, M., et al., "Properties of SiGe Oxides Grown in a Microwave Oxygen Plasma", J. Applied Physics, 78, 6135-6140, (Nov. 1995).
Predel, B., et al., "Die Zustandsdiagramme Silber-Germanium-Silizium und Gold-Germanium-Silizium", J. Less-Common Metals, 44, 39-49, (Jan. 1976).
Schadel, H., et al., "Activity of Liquid Silver-Silicon Alloys", Trans. American Institute of Mining and Metallurgical Engineers, 188, 1282-1283, (Oct. 1950).
Ushiku, Y., et al., "Planarized Silver Interconnect Technology with a Ti Self-Passivation Technique for Deep Sub-Micron ULSIs", 1993 Symp. on VLSI Technology: Digest of Technical Papers, 121-122, (1993).
Wu, S., et al., "Suppression of the Boron Penetration Induced Si/SiO2 Interface Degradation by Using a Stacked-Amorphous-Silicon Film as the Gate Structure for pMOSFET", IEEE Electron Device Letters, 15, 160-162, (May 1994).

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods and structures for gold interconnections in integrated c does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods and structures for gold interconnections in integrated c, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods and structures for gold interconnections in integrated c will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-901561

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.