Telecommunications – Transmitter and receiver at separate stations – Plural transmitters or receivers
Reexamination Certificate
2000-05-04
2003-12-16
Maung, Nay (Department: 2684)
Telecommunications
Transmitter and receiver at separate stations
Plural transmitters or receivers
C455S456100, C342S357490, C370S350000, C370S507000
Reexamination Certificate
active
06665541
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention relates to the field of cellular communication systems, and particularly those systems where the location of a mobile cellular communication station (MS) is determined.
In order to perform position location in cellular networks (e.g. a cellular telephone network) several approaches have been utilized which perform triangulation based upon the use of timing information sent between each of several basestations and a mobile device, such as a cellular telephone. In one approach, called Time Difference of Arrival (TDOA), the times of reception of a signal from a mobile is measured at several basestations, and these times are transmitted to a location determination entity, called a location server, which computes the position of the mobile. For this approach to work, the times-of-day at the various basestations need to be coordinated to provide accurate location. Also, the position of the basestations needs to be known accurately.
FIG. 1
shows an example of a TDOA system where the times of reception (TR
1
, TR
2
and TR
3
) of the same signal from the mobile cellular telephone
22
are measured at cellular basestations
12
,
14
and
16
by a location server
24
. The location server
24
is coupled to receive data from the basestations through the mobile switching center
18
. The mobile switching center
18
provides signals (e.g. voice communications) to and from the land-line Public Switched Telephone System (PSTS) so that signals may be conveyed to and from the mobile telephone to other telephones (e.g. land-line phones on the PSTS or other mobile telephones).
In some cases the location server may also communicate with the mobile switching center via a cellular link. The location server may also monitor emissions from several of the basestations in an effort to determine the relative timing of these emissions.
An alternative method, called EOTD, measures at the mobile the times of arrival of signals transmitted from each of several basestations.
FIG. 1
applies to this case if the arrows of TR
1
, TR
2
and TR
3
are reversed. This timing data may then be used to compute the position of the mobile. Such computation may be done at the mobile itself or at a location server, if the timing information so obtained by the mobile is transmitted to this server via the link. Again, the basestation times-of-day must be coordinated and their location accurately assessed. In either approach, the locations of the basestations are determined by standard surveying methods and may be stored in the basestation or at the server in some type of computer memory.
Yet a third method of doing position location utilizes in the mobile a receiver for the Global Position Satellite System (GPS) or other satellite positioning system (SPS). Such a method may be completely autonomous or may utilize the cellular network to provide assistance data or share in the position calculation. Examples of such a method are described in U.S. Pat. No. 5,841,396; No. 5,945,944; and No. 5,812,087. As a shorthand, we call these various methods “SPS.”
A combination of either the EOTD and TDOA and an SPS system is called a “hybrid” system.
It should be clear from the above description, that for EOTD or TDOA, time coordination between the various cellular basestations is necessary for accurate position calculation of the mobile. The required time-of-day accuracy at the basestations depends upon details of the positioning method utilized. In one method the round trip delay (RTD) is found for signals that are sent from the basestation to the mobile and then are returned. In a similar, but alternative, method the round trip delay is found for signals that are sent from the mobile to the basestation and then returned. Each of these round trip times are divided by two to determine an estimate of the one-way time delay. Knowledge of the location of the basestation, plus a one-way delay constrains the location of the mobile to a circle on the earth. Another measurement with a second basestation then results in the intersection of two circles, which in turn constrains the location to two points on earth. A third such measurement resolves the ambiguity. With round trip timing it is important that the measurements with the several basestations be coordinated to several seconds, at worst, so that if the mobile is moving rapidly, the measurements will correspond to those occurring at the same location.
In other situations, it is not possible to perform round trip measurements to each of two or three basestations, but only to one basestation which is the primary one communicating with the mobile. This is the case for the IS-95 North American CDMA cellular standard. Or, it may not be possible to perform accurate round trip timing measurements at all due to equipment or signaling protocol limitations. In this case, it is even more important that accurate timing be maintained at the basestations, if a triangulation operation is to be performed, since only the time difference between mobile-basestation paths is what is utilized.
Another reason to have accurate timing present at basestations is to provide time to the mobiles for aiding GPS based position calculations; such information may result in reduced time to first fix, and/or improved sensitivity. The required accuracy for these situations can range from a few microseconds to around 10 milliseconds depending upon the performance improvement desired. In a hybrid system, the basestation timing serves the dual purpose of improving the TOA or TDOA operation as well as the GPS operation.
The prior art approaches to network timing employed special fixed location timing systems, termed Location Measurement Units (LMU) or Timing Measurement Units (TMU). The units typically included a GPS receiver which enable determination of accurate time-of-day. The location of the units may be surveyed, such as may be done with GPS based surveying equipment.
Typically, LMU's or TMU's observe the timing signals, such as framing markers, present within the cellular communication signals that are transmitted from the basestations and attempt to time-tag these timing signals with the local time found via a GPS set or other time determination device. Messages may then be sent to the basestations (or other infrastructure components), which allow these entities to keep track of elapsed time. Then, upon command, or periodically, special messages may be sent over the cellular network to mobiles served by the network indicating the time-of-day associated with the framing structure of the signal. This is particularly easy for a system such as GSM in which the total framing structure lasts over a period exceeding 3 hours. It is noted that the location measurement units may serve other purposes, such as acting as the location servers—that is, the LMU's may actually perform the time-of-arrival measurements from the mobiles in order to determine the positions of the mobiles.
One problem with the LMU or TMU approach is that they require the construction of new special fixed equipment at each basestation or at other sites within communication range of several basestations. This can lead to very high costs for installation and maintenance.
SUMMARY OF THE INVENTION
The present invention provides various methods and apparatuses for synchronizing cellular basestations in a cellular network. One exemplary method performs time synchronization between at least two basestations, a first basestation and a second basestation, of a cellular communication system. In this exemplary method, a first time-of-day and a first location of a first mobile cellular station (MS) are determined from a first satellite positioning system (SPS) receiver which is co-located with the first mobile station (MS), and the first time-of-day and first location are transmitted by the first MS to a first basestation which determines a time-of-day of the first basestation from the first time-of-day and first location and from a known location of the first basestation. Also in this exemplary met
Jolley Edward V.
Krasner Norman F.
Brown Charles D.
Greenhaus Bruce W.
Lele Tanmay
Maung Nay
Snaptrack Incorporated
LandOfFree
Methods and apparatuses for using mobile GPS receivers to... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Methods and apparatuses for using mobile GPS receivers to..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods and apparatuses for using mobile GPS receivers to... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3135041