Methods and apparatus for RF power delivery

Electric heating – Metal heating – By arc

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C219S121540

Reexamination Certificate

active

06326584

ABSTRACT:

BACKGROUND
The present invention relates to improved methods and apparatus for delivering radio frequency (RF) power for RF power process operations.
RF power is used in a wide variety of applications for carrying out process operations. Exemplary of such process operations is the use of RF induction power for heating. RF induction heating involves coupling RF power to a material, such as a workpiece, that absorbs the RF power and converts the RF power into heat. In other words, the currents induced in material by the RF power are converted into heat because of the electrical resistance of the material that absorbs the RF power. In this manner, the RF power can be used to heat the workpiece without having physical contact between the power source and the object. This type of heating can be used when the workpiece is the material that absorbs the RF power, and the workpiece is heated directly by the RF power. Alternatively, the workpiece may be in contact with or near a second material that absorbs RF power. The second material absorbs the RF power and creates heat. The heat is then transferred to the workpiece by conduction, convection, or radiation.
In another example of RF heating, the RF power can be coupled to a gas to produce a thermal plasma. Free electrons in the thermal plasma absorb the RF power and they are raised to high energy levels. These energetic free electrons interact with other gas phase species to produce a high temperature mixture capable of transferring thermal energy to other gases, liquids, or solids.
The thermal plasmas mentioned above can be used to promote chemical reactions. Chemical reactions can be promoted because of the high temperatures of the thermal plasma. Alternatively, thermal plasmas are able to promote chemical reactions because of the ability of the energetic electrons to break chemical bonds and allow chemical reactions to occur that would proceed with difficulty under non-plasma conditions.
The manufacture of optical fiber pre-forms is an example of the use of thermal plasmas generated using RF power. The RF thermal plasma provides the energy for driving the chemical reactions in gas mixtures of silicon compounds, oxygen, and dopants. The chemical reactions cause deposition of doped silica layers.
Another example involving RF power thermal plasmas is the operation of high-pressure gas lasers. In gas laser operation, the important characteristic of the RF plasma is the light emission that occurs because of the plasma. The thermal energy that is produced is generally not considered important to the operation of the laser.
In other applications, RF power is used to produce non-thermal plasmas, also referred to as non-equilibrium plasmas. The fabrication of semiconductor devices is one area in which non-thermal plasmas are extensively used. The non-thermal plasmas are used for etch processes wherein the non-thermal plasmas are used to generate reactive species in a gas to accelerate reactions between the species and a solid surface. The etch process can be a general removal of components on the surface as in a cleaning process or the selective removal of material from certain areas on the surface through use of a masking material that has been previously patterned. Non-thermal plasmas are used to promote deposition reactions wherein gas phase species are caused to react to form a solid product that deposits on surfaces. During the manufacture of semiconductor devices, etch processes involving RF plasmas and deposition processes involving RF plasmas are used repeatedly during the fabrication process. One of the main benefits of using the non-thermal plasma is the ability of the non-thermal plasma to stimulate chemical reactions that would otherwise require temperatures that are too high for use in the fabrication of semiconductor devices.
RF power non-thermal plasmas are also used as cleaning processes in the fabrication of semiconductor devices. The non-thermal plasmas are commonly used to strip photoresist materials from semiconductor wafers as part of post etch wafer clean procedures. The photoresist material serves as a mask material during etch processes used in patterning the surface of the devices. Resist material is stripped from the surface of the wafers by creating a non-thermal plasma in a gas containing oxidizing species such as oxygen and possibly halogen species that are capable of reacting with and volatilizing the resist material. In some applications, the non-thermal plasma is maintained at a position upstream of the wafer. Reactive species generated in the non-thermal plasma flow downstream and react with the wafer surface for the stripping process.
Another cleaning process that uses non-thermal plasmas is the cleaning of reaction chambers used in semiconductor manufacturing. Sometimes, the reaction chambers used in plasma etch processes experience a buildup of deposits from the etch process. These deposits need to be removed as part of the reactor maintenance process. In addition, the reactors that are used in deposition processes for semiconductor device fabrication undergo a buildup of deposits on the reactor walls; the wall deposit must be removed as part of reactor maintenance. Non-thermal plasmas generated using RF power and gases containing species that are reactive with the deposits have been used to volatilize and removed the deposits built up on the walls of etch reactors and deposition reactors.
RF power plasmas have also been used for decomposition of chemical compounds that are hazardous or otherwise undesirable. Some of the compounds are highly refractory in nature and are difficult to decompose. Examples of compounds that have been decomposed or abated with plasmas include chlorofluorocarbons (CFC) and perfluorocompounds (PFC).
The applications given above where RF power is used as part of a process makeup only a small fraction of the applications for RF power. There are numerous additional processing applications for RF power. However, the methods and apparatus typically used to deliver RF power have deficiencies and may be inefficient for use in some RF power process operations. Some of the deficiencies are common for multiple applications. The existing deficiencies in the prior methods and apparatus for RF power delivery may limit the use of RF power for possible new applications.
One frequently encountered problem with prior RF power delivery systems is that the equipment tends to be large and heavy. There are instances in which the size of the RF power generator greatly exceeds the size of the processing chamber. Problems resulting from the large size of the equipment include taking up excess space on a factory floor. The excess space required by the equipment can be quite expensive if it is in a high-cost factory, such as a cleanroom used in semiconductor manufacturing. The large size also makes transporting the equipment difficult. Moving the apparatus frequently requires more than one person and the use of moving equipment.
A second problem with existing RF power delivery systems is their complexity. The existing systems frequently have redundant systems and extra capabilities that are unnecessary. In addition, the effort to derive data for controlling the RF power delivery is unnecessarily complex.
Here is one example of how a typical old-style RF power delivery system operates. Low frequency AC power is rectified and then switched to provide current to the RF amplifier. The RF amplifier drives current through an output match network and then through an RF power measurement circuit to the output of the power supply. The output match is usually designed to provide RF power that matches an impedance of 50 ohms. The 50 ohm impedance match is necessary in order to have the same characteristic impedance as the industry standard coaxial cables. Power flow through the 50 ohm coaxial cable section is measured again by a load match controller. The instrument used for measuring the power is also designed to be compatible with the 50 ohm impedance of the coaxial cable. A load match, usually a variable RF mat

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods and apparatus for RF power delivery does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods and apparatus for RF power delivery, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods and apparatus for RF power delivery will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2588080

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.