Methods and apparatus for forming and maintaining high...

Cleaning and liquid contact with solids – Processes – Including use of vacuum – suction – or inert atmosphere

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C134S019000, C134S022100

Reexamination Certificate

active

06361618

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to vacuum processing equipment. More particularly, the present invention relates to the creation and maintenance of high vacuum environments in which substrates, including semiconductor substrates, may be degassed or cleaned before processing by sputtering or other film layer deposition or etching processes. More particularly still, the present invention relates to a method of removing contaminants outgassed from a substrate in a degas chamber through placement of a getter pump in the de-gas chamber.
2. Background of the Invention
Thin film deposition apparatus and techniques are used, among other techniques, to provide film layers on semiconductor substrates. An environment in which desired materials are transported in an ultrahigh vacuum to condense on a clean substrate is a preferred processing technique in the fabrication of microdevices. One well known prior art deposition process is sputtering where substrates are typically moved through load locks and into high vacuum processing chambers which enclose the substrate and a target composed of the material desired to be deposited on the substrate. A negative voltage applied to the target excites into a plasma state an inert gas (typically argon) supplied to the chamber. Ions from the plasma bombard the target and eject particles of target material from the target toward the substrate. These particles deposit on the substrate to form the desired film. In some sputtering process applications, the substrate may be heated to temperatures on the order of about 350° C. to about 510° C. or higher, to reflow a film layer deposited on the substrate by sputtering.
The low pressure, high temperature environments typically utilized in deposition processes cause outgassing of contaminants in the substrates, as well as the components of the deposition chamber. These contaminants, such as hydrogen (H
2
), water (H
2
O) and air (mostly O
2
and N
2
), are detrimental to the film layer which is deposited onto the substrate. Therefore, processes for removing contaminants prior to processing have been developed to reduce the problem of contamination in processing environments. Such processes typically are confined to degas chambers located near the front of a cluster tool or otherwise in the preliminary steps of substrate processing.
Typically, substrates are housed in degas chambers and subjected to processing conditions, such as low pressure and high temperature, for a period of time prior to processing of outgas contaminants therefrom. Such processes typically include heating the substrates to a temperature at least as high as the processing temperature to which the wafer will be subjected in a low pressure chamber environment. The result of heating the substrate at low pressure is outgassing of contaminants such as hydrogen, H
2
O and air from the substrate. The theory being that by subjecting the substrate to at least the processing temperature at low pressure all contaminants that would be outgassed during processing at this temperature and pressure will have already been removed from the substrate by the time processing occurs. Following outgassing of contaminants, the substrate is moved through a load lock and into a processing chamber where processing occurs.
Having the substrate surface atomically clean before processing can be of vital importance for adhesion of subsequently deposited films and determining other physical properties that are dependent on the interface between the substrate and the film, such as electrical contact. However, the contaminants which are outgassed from the substrate must be removed from the degas chamber to maintain the required vacuum level therein, and also to prevent migration out of the degas chamber and into the load lock area between the pre-processing apparatus and the processing apparatus. This problem exists in applications where wafer exchange in and out of the degas chamber is controlled via a slit valve in the degas chamber and where a slit valve is absent.
It is necessary, therefore, that the substrates on which the processing steps are typically performed must first be degassed because the low pressure, high temperature environments in which most processing steps are performed will otherwise outgas contaminants and compromise the integrity of the devices formed on the substrate. Therefore, the substrates must be degassed before introduction into the processing chamber to prevent contamination of both a film subsequently deposited on the substrate and the surface of the substrate of the interface between the film and the substrate.
Processing systems for workpieces such as semiconductor substrates incorporate multiple, isolated vacuum stages between the cassette load lock station and the main vacuum processing chambers. A vacuum gradient is applied between the cassette load lock and the main processing chambers to facilitate the use of a very high degree of vacuum in the processing chambers without lengthy pump down times. Pre-treatment chambers, such as degas chambers, are typically incorporated in the transport paths. One such processing system is described in U.S. Pat. No. 5,186,718, Tepman et al., issued on Feb. 16, 1993, the subject of which is hereby incorporated herein by reference. Pre-treatment chambers can be dedicated to pre-treating (e.g., plasma etch cleaning, vacuum cleaning and/or heating) of the substrates before processing.
A combination of a roughing pump and a cryogenic pump is typically used to provide the vacuum in the degas chamber. Where the chamber is maintained at a temperature of below approximately 300° C., the roughing pump can reduce the pressure within the chamber to about 10
−3
torr, and the cryogenic pump can then reduce the chamber pressure to a pressure on the order of 10
−8
torr.
To minimize the inclusion of impurities or contaminants in the film deposited on the substrate, it is generally considered desirable to maintain the sputtering chamber at the highest possible vacuum, that is, the lowest possible pressure. However, the greater the vacuum in the chamber and the higher the temperature in the chamber, the greater the influx of undesirable contaminants, such as H
2
O and air, into the chamber due to outgassing from the substrates.
Because of the low condensation temperature of hydrogen, cryogenic pumps are relatively ineffective at removing hydrogen. The difficulty of maintaining a sufficiently low partial pressure of hydrogen has limited the ability of existing sputtering chambers to operate at high temperatures and ultra-high vacuums.
Sputter deposition of aluminum films on semiconductor substrates is an application in which ultra-high vacuum at high temperatures is especially desirable. The ultra high vacuum is used to achieve outgassing of contaminants and removal thereof from the chamber. The chamber pressure for sputtering, commonly as high as the milli-torr range, is commonly achieved by first evacuating the chamber to an ultra high vacuum pressure as low as the 10
−8
torr range to remove contaminants from the chamber, and then re-filling (“back filling”) the chamber with a clean process gas at a total chamber pressure regulated at about 10
−3
torr.
High substrate temperatures are used to enhance the step coverage of the deposited film, that is, to improve the ability of the film to completely fill holes and trenches in the surface of the semiconductor substrate. Higher temperatures promote the diffusion of deposited atoms, called “reflow,” to fill any gaps in, and equalize the thickness of the film as it is being deposited onto the substrate. Lower chamber pressures promote reflow of the deposition material on the substrate by reducing the occurrence of reflow inhibiting contaminants on the substrate surface. Reflow may occur simultaneously with the deposition of the film layer, at the end of the deposition step, or in a separate chamber dedicated to reflow.
For aluminum reflow, the substrate generally is heated by heating the pedesta

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods and apparatus for forming and maintaining high... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods and apparatus for forming and maintaining high..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods and apparatus for forming and maintaining high... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2818803

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.