Semiconductor device manufacturing: process – Introduction of conductivity modifying dopant into... – Ion implantation of dopant into semiconductor region
Reexamination Certificate
2011-07-12
2011-07-12
Wilczewski, Mary (Department: 2822)
Semiconductor device manufacturing: process
Introduction of conductivity modifying dopant into...
Ion implantation of dopant into semiconductor region
C438S902000, C257SE21120, C257SE21340
Reexamination Certificate
active
07977224
ABSTRACT:
A method of preventing the escape of nitrogen during the activation of ion implanted dopants in a Group III-nitride semiconductor compound without damaging the Group III-nitride semiconductor comprising: depositing a first layer of another Group III-nitride that acts as an adhesion layer; depositing a second layer of a Group III-nitride that acts as a mechanical supporting layer; said first and second layers forming an annealing cap to prevent the escape of the nitrogen component of the Group III-nitride semiconductor; annealing the Group III-nitride semiconductor at a temperature in the range of approximately 1100-1250° C.; and removing the first and second layers from the Group III-nitride semiconductor.
REFERENCES:
patent: 4058413 (1977-11-01), Welch et al.
patent: 5468678 (1995-11-01), Nakamura et al.
patent: 5494861 (1996-02-01), Yamaga et al.
patent: 5927995 (1999-07-01), Chen et al.
patent: 5936329 (1999-08-01), Shibata et al.
patent: 6342748 (2002-01-01), Nakamura et al.
patent: 6432788 (2002-08-01), Maruska et al.
patent: 7419892 (2008-09-01), Sheppard et al.
patent: 7449345 (2008-11-01), Horng et al.
patent: 7589004 (2009-09-01), Usov et al.
patent: 7642693 (2010-01-01), Akiyama et al.
patent: 7678628 (2010-03-01), Sheppard et al.
patent: 7709859 (2010-05-01), Smith et al.
patent: 7732301 (2010-06-01), Pinnington et al.
patent: 7767509 (2010-08-01), Liu et al.
patent: 7815970 (2010-10-01), Schlesser et al.
patent: 2006/0257626 (2006-11-01), Schlesser et al.
patent: 2006/0286784 (2006-12-01), Usov et al.
patent: 2007/0057285 (2007-03-01), Akiyama et al.
patent: 2007/0164315 (2007-07-01), Smith et al.
patent: 2007/0269968 (2007-11-01), Saxler et al.
patent: 2008/0242038 (2008-10-01), Liu et al.
patent: 2010/0123118 (2010-05-01), Hu et al.
patent: 2010/0147835 (2010-06-01), Mulpuri et al.
patent: 2010/0200954 (2010-08-01), Del Agua Borniquel et al.
J.A. Fellows, et al., “Electrical and Optical Activation studies of Si-Implanted GaN,” Journal of Electronic Materials, col. 34, No. 8, pp. 1107-1164 (2005).
J.A. Fellows, Y.K. Yeo, M.-Y. Ryu, and R. L. Hengehold, “Optical study of implantation damage recovery from Si-implanted GaN” Sol. State. Commun. 133, 213 (2005).
J.C. Zolper, J. Han, R.M. Biefeld, S.B. van Deusen, W.R. Wampler, D.J. Reiger, S.J. Pearton, J.S. Williams, H.H. Tan, R.F. Karlicek, Jr., and R.A. Stall, “Si-Implantation Activation Annealing of GaN up to 1400° C,”J. Electron. Mater. 27, 179 (1998).
K.A. Jones, P.B. Shah, K.W. Kirchner, R.T. Lareau, M.C. Wood, M.H. Ervin, R.D. Vispute, R.P. Sharma, T. Venkatesan, and O.W. Holland, “Annealing ion implanted SiC with an AIN cap,” J. Mater. Sci. and Eng. B61-62, 281 (1999).
C.J. Eiting, P.A. Grudowski, R.D. Dupuis, H. Hsia, Z. Tang, D. Becher, H. Kuo, G.E. Stillman, and M. Feng, “Activation studies of low-dose Si implants in gallium nitride,” Appl. Phys. Lett. 73, 3875 (1998).
J.A. Fellows, et al., “Electrical activation studies of GaN implanted with Si from low to high dose,” Appl. Phys. Lett. 80, 1930 (2002).
S. Matsunaga, S. Yshida, T. Kawaji, and T. Inada, “Si Implantation in Epitaxial GaN Layers,” J. Appl. Phys. vol. 95, pp. 2461-2466, Mar. 2004.
Y. Irokawa, J. Kim, F. Ren, H.H. Balk, B.P. Gila, C.R. Abernathy, S.J. Pearton, C.C. Pan, G.T. Chen, and J.I. Chyl, “Activation kinetics of implanted Siimg id="CUSTOM-CHARACTER-00001" he="3.13mm" wi="1.44mm" file="US07977224-20110712-P00001.TIF" alt="custom character" img-content="character" img-format="tif" ?in GaN and application to fabricating lateral Schottky diodes,” Appl. Phys. Lett. 83, 4987 (2003).
Y. Nakano an T. Jimbo, “Co-implantation of Si + N into GaN for n-type Doping,” J. Appl. Phys. vol. 92, pp. 3815-3819, Jun. 2002.
Y. Irokawa, O. Fujishima, T. Kachi, S.J. Pearton, and F. Ren, .Electrical characteristics of GaN implanted with Si+ at elevated temperatures Appl Phys. Lett. 86, 112108 (2005).
Y. Irokawa, O. Fujishima, T. Kachi, and Y. Nakano, “Electrical activation characteristics of silicon-implanted GaN,” J. Appl. Phys. 97, 83505 (2005).
R Roy, D K Agrawal, H A McKinstry “Very Low Thermal Expansion Coefficient Materials” Annual Review of Materials Science, Aug. 1989, vol. 19, pp. 59-81.
C. Kisielowski, Gallium Nitride I and II, in Semiconductors and Semimetals, vol. 57 (Academic, New York, 1998) Chap. 7, p. 276.
P.J. Burkhardt and R.F. Marvel, “Thermal expansion of sputtered silicon. nitride films,” J. Electrochem. Soc., vol. 116, No. 6, pp. 864-866, Jun. 1969.
W. Qian, M. Skowronski, and G.R. Rohrer, Structural defects and their relationship to nucleation of GaN thin films. in III-Nitride, SiC, and Diamond Materials for Electronic Devices. Eds. Gaskill D.K, Brandt C.D. and Nemanich R.J., Material Research Society Symposium Proceedings, Pittsburgh, PA. 423 (1996), 475-486.
J.R. Mieham, S.J. Pearton, C.R. Abernathy, J.D. Mackenzie, R.J. Shul, and S.P. Kilcoyne,Wet chemical etching of AIN, Appl. Phys. Lett. 67, 1119 (1995).
H. Yu, L. McCarthy, H. Xing, P. Waltereit, L. Shen, S. Keller, S.P. Denbaars, J.S. Speck, and U.K. Mishra, “Dopant Activation and Ultralow Contact Resistance to Si-Ion-Implanted GaN,” Appl. Phys. Lett., vol. 85, pp. 5254-5256, Nov. 2004.
E. Nogales, R.W. Martin, K.P. Connell, K. Lorenz, E. Alves, S. Ruffenach, and O. Briot, “Failure mechanism of AIN nanocaps used to protect rare earth-implanted GaN during high temperature annealing” Appl. Phys. Lett. vol. 88, 31902-31906, Jan. 2006.
X.A. Cao, C.R. Abernathy, R.K. Singh, S.J. Pearton, M. Fu, V. Sarvepalli, J.A. Sekhar, J.C. Zolper, D. J. Rieger, J. Han, T. J. Drummond, and R. J. Shul, and R. G. Wilson, “Ultrahigh Si + implant activation efficiency in GaN using a high-temperature rapid thermal process system,” Appl. Phys. Lett. 73, 229 (1998).
J.A. Fellows, Y.K. Yeo, M.-Y. Ryu, and R. L. Hengehold, Sol. State. Commun. 133, 213 (2005).
H.Yu, L. McCarthy, S. Rajan, S. Keller, S. Denbaars, J. Speck, and U. Mishra, “Ion Implanted AIGaN—GaN HEMTs with Nonalloyed Contacts,” IEEE Electron. Dev. Lett., vol. 26, pp. 283-285, May 2005.
J. Karpinski, J. Jun, and S. Prowski, “Equilibrium pressure of N2 over GaN and high pressure solution growth of GaN” J. Crystal Growth 66, 1 (1984).
I. Yonenaga, J. Condens. “High-temperature strength of III—V nitride crystalsHigh-temperature strength of III—V nitride crystals” Matter 14, 12947 (2002).
I. Yonenaga and K. Motoki, “Yield strength and dislocation mobility in plastically deformed bulk single-crystal GaNJ,” Appl. Phys. 90, 6539 (2001).
W. Qian, G.S. Rohrer, M. Skowronski, K. Doverspike, L.B. Rowland, and D.K. Gaskill, Open-core screw dislocations in GaN epilayers observed by scanning force microscopy and high-resolution transmission electron microscopy, Appl. Phys. Lett. 67, 2284 (1995).
S.K. Hong, T. Yao, B.J. Kim, S.Y. Yoon, and T.I. Kim, “Origin of hexagonal-shaped etch pits formed in (0001) GaN films,” Appl. Phys. Lett. 77, 82 (2000).
E. Bellet-Amalric, C. Adelmann, E. Sariannidou, J.L. Rouviere, B. Feuillet, E. Monroy, and B. Daudin, “Plastic strain relaxation of nitride heterostructures,” J. Appl. Phys. 95, 1127 (2004).
W. Gotz, N. M. Johnson, C. Chen, H. Liu, c. Kuo, and W. Imier, “Activation energies of Si donors in GaN,” Appl. Phys. Lett. 68, 3144 (1996).
H.M. Ng, D. Doppalapudi, T.D. Moustakis, N.G. Weimann, L.F. Eastman,“The role of dislocation scattering in n-type GaN films,” Appl. Phys. Lett. 73, 821 (1998).
S. Nakamura, T. Mukai, and M. Senoh, “In situ monitoring and Hall measurements of GaN grown with GaN buffer layers,” J. Appl. Phys. 71, 5543 (1992).
P. Boguslawski, et al. “Native defects in gallium nitride,” Phys. Rev. B 51, 17255-17258 (1995).
J.A. Fellows, et al., “Electrical activation studies of GaN implanted with Si from low to high dose,” Ap
Derenge Michael Andrew
Hager, IV Carl Emmett
Jones Kenneth Andrew
Anderson Lawrence E.
The United States of America as represented by the Secretary of
Wilczewski Mary
LandOfFree
Method using multiple layer annealing cap for fabricating... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method using multiple layer annealing cap for fabricating..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method using multiple layer annealing cap for fabricating... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2694584