Etching a substrate: processes – Nongaseous phase etching of substrate – Etching inorganic substrate
Reexamination Certificate
2001-02-23
2004-07-06
Hassanzadeh, P. (Department: 1763)
Etching a substrate: processes
Nongaseous phase etching of substrate
Etching inorganic substrate
C216S100000, C216S101000
Reexamination Certificate
active
06758985
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to methods for removing ceramic coatings. More particularly, this invention is directed to a method for removing a layer of thermal-insulating ceramic material, such as yttria-stabilized zirconia (YSZ) from the surface of a component intended for service at high temperatures, such as a component of a gas turbine engine.
BACKGROUND OF THE INVENTION
Components located in certain sections of gas turbine engines, such as the turbine, combustor and augmentor, are often thermally insulated with a ceramic layer in order to reduce their service temperatures, which allows the engine to operate more efficiently at higher temperatures. These coatings, often referred to as thermal barrier coatings (TBC), must have low thermal conductivity, strongly adhere to the article, and remain adherent throughout many heating and cooling cycles.
Coating systems capable of satisfying the above requirements typically include a metallic bond coat that adheres the thermal-insulating ceramic layer to the component. Metal oxides, such as zirconia (ZrO
2
) partially or fully stabilized by yttria (Y
2
O
3
), magnesia (MgO) or other oxides, have been widely employed as the material for the thermal-insulating ceramic layer. The ceramic layer is typically deposited by air plasma spraying (APS), low pressure plasma spraying (LPPS), or a physical vapor deposition (PVD) technique such as electron beam physical vapor deposition (EBPVD), which yields a strain-tolerant columnar grain structure. Bond coats are typically formed of an oxidation-resistant diffusion coating such as a diffusion aluminide or platinum aluminide, or an oxidation-resistant alloy such as MCrAlY (where M is iron, cobalt and/or nickel). Aluminide coatings are distinguished from MCrAlY coatings, in that the former are primarily aluminide intermetallic while the latter are a metallic solid solution that contains a mixture of phases, including &bgr;NiAl.
Though significant advances have been made with coating materials and processes for producing both the environmentally-resistant bond coat and the thermal-insulating ceramic layer, there is the inevitable requirement to remove and replace the ceramic layer under certain circumstances. For example, removal may be necessitated by erosion or impact damage to the ceramic layer during engine operation, or by a requirement to repair certain features such as the tip length of a turbine blade. Removal of the ceramic layer may also be necessitated during component manufacturing to address such problems as defects in the coating, handling damage and the need to repeat noncoating-related manufacturing operations which require removal of the ceramic, e.g., electrical-discharge machining (EDM) operations.
Current state-of-the-art repair methods often result in removal of the entire TBC system, i.e., both the ceramic layer and bond coat, after which the bond coat and ceramic layer must be redeposited. One such method is to use abrasives in procedures such as grit blasting, vapor boning and glass bead peening, each of which is a slow, labor-intensive process that erodes the ceramic layer and bond coat, as well as the substrate surface beneath the coating. With repetitive use, these procedures eventually destroy the component by reducing the wall thickness of the component. This disadvantage is particularly acute with diffusion aluminide bond coats, which have a diffusion zone that extends into the substrate surface of the component. Damage to diffusion aluminide bond coats generally occurs by the fracturing of brittle phases in the diffusion zone, such as PtAl
2
phases of a platinum-aluminide bond coat, or in the additive layer, which is the outermost bond coat layer containing an environmentally-resistant intermetallic phase MAl, where M is iron, nickel or cobalt, depending on the substrate material. Damage is particularly likely when treating an air-cooled component, such as a turbine blade whose airfoil surfaces include cooling holes from which cooling air is discharged to cool the external surfaces of the blade.
Consequently, significant effort has been directed to developing nonabrasive processes for removing ceramic coatings. One such method is an autoclaving process in which the ceramic coating is subjected to elevated temperatures and pressures in the presence of a caustic compound. This process has been found to sufficiently weaken the chemical bond between the ceramic and bond coat oxide layers to permit removal of the ceramic layer while leaving the bond layer intact. However, suitable autoclaving equipment is expensive, and autoclaving techniques have been incapable of removing ceramic from the cooling holes of an air-cooled turbine blade.
Accordingly, what is needed is a process capable of removing a ceramic layer from a component without damaging an underlying substrate, including any bond coat used to adhere the ceramic layer.
SUMMARY OF THE INVENTION
The present invention provides a method of removing a ceramic coating, such as a thermal barrier coating (TBC) of yttria-stabilized zirconia (YSZ), from the surface of a component. Particularly notable examples are gas turbine engine components exposed to the hostile thermal environment of the turbine, combustor and augmentor sections of a gas turbine engine. The method is particularly suited for completely removing a thermal-insulating ceramic coating of a thermal barrier coating system without removing a metallic bond coat, such as a diffusion aluminide or MCrAlY coating, that adheres the ceramic coating to the surface of the component.
The method of this invention generally entails subjecting the ceramic coating to an aqueous solution of ammonium bifluoride. A preferred process for removing the ceramic coating further entails immersing the component in the solution while maintained at an elevated temperature, and subjecting the coating to ultrasonic energy. Using the method of this invention, a ceramic coating can be completely removed from the component and any cooling holes, with essentially no degradation of the bond coat. Accordingly, this invention allows the deposition of a new ceramic coating on components in production without refurbishment or replacement of the bond coat and without depositing additional ceramic in the cooling holes, which would be detrimental to the performance of the component. If the component has been in service, such that the bond coat has been partially depleted as a result of oxidation, the bond coat can be refurbished before replacing the ceramic coating.
A significant advantage of this invention is the reduced labor, equipment and processing costs required to remove a ceramic coating of a thermal barrier coating system. In addition to the simplified process and equipment that can be used, labor and process costs are further reduced by avoiding damage and removal of the bond coat. In addition, the service life of a component can also be extended by avoiding replacement of its entire thermal barrier coating system, since removal of a bond coat results in loss of wall thickness, particularly if the bond coat is a diffusion aluminide which inherently shares a significant diffusion zone with the component substrate. Importantly, prior art techniques for removing a ceramic layer of a TBC have typically been unable to remove ceramic from cooling holes, or have caused excessive damage to the bond coat in the process of removing the ceramic. By completely removing ceramic from the cooling holes of an air-cooled component, the performance of the component is improved by the restored uniform film cooling of its surfaces.
Other objects and advantages of this invention will be better appreciated from the following detailed description.
REFERENCES:
patent: 3622391 (1971-11-01), Baldi
patent: 3847688 (1974-11-01), Gillice
patent: 4181623 (1980-01-01), Dillarstone et al.
patent: 4302246 (1981-11-01), Brindisi, Jr. et al.
patent: 4425185 (1984-01-01), Fishter et al.
patent: 4652513 (1987-03-01), Pentak et al.
patent: 4889589 (1989-12-01), McComas
patent: 5028385 (1991-07-01),
Culbert Roberts
General Electric Company
Hartman Domenica N. S.
Hartman Gary M.
Hassanzadeh P.
LandOfFree
Method of removing a ceramic coating does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method of removing a ceramic coating, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of removing a ceramic coating will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3219904