Multiplex communications – Pathfinding or routing – Combined circuit switching and packet switching
Reexamination Certificate
1999-03-31
2003-07-29
Nguyen, Chau (Department: 2663)
Multiplex communications
Pathfinding or routing
Combined circuit switching and packet switching
C379S088140
Reexamination Certificate
active
06600736
ABSTRACT:
TECHNICAL FIELD
This invention relates to interactive voice services, and more particularly to interactive voice services provided over a combination of a voice network and a computer network such as the Internet.
BACKGROUND OF THE INVENTION
In traditional interactive voice response (IVR) systems, an end user at an audio terminal, such as a telephone set, interacts over the public switched telephone network (PSTN) with an IVR system, such as a CONVERSANT® system available from Lucent Technologies, Inc. During the progress of a call, the end user provides audio or touch-tone inputs in response to queries or prompts outputted by the IVR system over the PSTN, as for example when a user identifies himself by name and/or the input of an ID or PIN code through touch-tone or voice. The IVR system, using a combination speech recognition techniques and standard techniques for detecting dual tone multi-frequency (DTMF) touch-tone inputs, is able to interpret the end user's responses. The queries and the expected audio or touch-tone inputs from the end user follow a “script” programmed into the IVR system in accordance with the service being provided by the proprietor of the system. The general population is familiar interacting with such systems, which are used, as example, for banking transactions, telephone catalog sales, etc. With such systems, when the end user completes an interactive session through one IVR system and wishes to engage in a next interactive session with a different IVR system that may or may not be associated with the first system, he terminates the first call and then initiates a second telephone call from his telephone set over the PSTN to the second IVR system. When the second call is answered, the end user may need to again identify himself in some manner, and then proceed with the session with the second IVR system. Thus, the end user initiates each successive IVR session over the PSTN through separate independent telephone calls, at each of which he is likely to need to identify himself to the IVR system by means of an ID code and/or PIN number, through speech recognition or other mechanism. If during an interactive session with a first IVR system, transfer to a second separate, but associated, IVR system is required, such as from a customer service department to a sales department, the service provider must effect the transfer of the call with the concomitant expense of the second call.
In the last several years, the use of the Internet as a means of transporting information to and from users has grown in leaps and bounds. Typically, computers equipped with browser programs, such as the popular Netscape® Navigator or Microsoft® Explorer browsers, provide a graphical user interface which allows the computer user to interact with web servers connected on the Internet or other Internet Protocol (IP) computer network. With such browser programs, the computer user, by inputting a web server's Uniform Resource Locator (URL) code, establishes a virtual connection over the Internet to that web server. Via hypertext markup language (HTML)-formatted pages that are transmitted to the user and displayed on the computer's monitor, a user is able to interact with a provider of goods, services or information. By clicking on a hyperlink or by inputting a new URL code, the user's computer is quickly connected to retrieve another page from the same or a different web server.
Techniques for extending Internet access to the still large number of end users who do not have a computer and are equipped only with a telephone or other similar audio interface device have been developed and described in, for example, International Application Published Under the Patent Cooperation Treaty (PCT), Publication Number WO 97/40611 entitled “Method and Apparatus For Information Retrieval Using Audio Interface”, published Oct. 20, 1997 and claiming a priority date of Apr. 22, 1996 based on a co-pending U.S. patent application Ser. No. 08/635,801 to M. A. Benedikt, D. A. Ladd, J. C. Ramming, K. G. Rehor (co-inventor herein), and C. D. Tuckey; D. L. Atkins, T. Ball (co-inventor herein), T. R. Baran, M. A. Benedikt, K. C. Cox, D. A. Ladd, P. A. Mataga (co-inventor herein), C. Puchol, J. C. Ramming, K. G. Rehor (co-inventor herein), and C. D. Tuckey, “Integrated Web and Telephone Service Creation”, Bell Labs Technical Journal, pp. 19035, Winter 1997; and U.S. patent application Ser. No. 09/168,405, filed Oct. 6, 1998 to M. K. Brown, K. G. Rehor (co-inventor herein), B. C. Schmidt and C. D. Tuckey entitled “Web-Based Platform for Interactive Voice Response (IVR)”. A phone markup language (PML) that can be used for web-based voice interactive services is described by J. C. Ramming in “PML: A Language Interface to Networked Voice Response Units”, Workshop on Internet Programming Languages, ICCL '98, Loyola University, Chicago, Ill., May, 1998. All four of these references are incorporated by reference herein. On Mar. 2, 1999, the
Wall Street Journal
reported joint cooperation by AT&T, Motorola and Lucent Technologies on a voice extensible markup language that allows end users to access the Internet by voice. That language is expected to become a standard for defining voice commands to the Internet and is likely to incorporate many aspects of the aforenoted PML.
As described in the aforenoted references, an end user at an audio terminal, such as a telephone, can access interactive services on an IP network through a system that acts as an adjunct that interfaces the PSTN voice network and the IP network such as the Internet or other wide area or local area computer network. In particular, this system, referred to hereinafter as a telephone/IP adjunct or server, functions to enable end users to engage in interactive services via their telephone set with web servers connected on such a wide area or local area network. The telephone/IP server, as described in the references, is embodied as hardware and software on a general purpose computer that together perform the functions of audio play and record, text-to-speech synthesis, DTMF (touch-tone) recognition, automatic speech recognition (ASR), and other call control functions necessary for interactive audio services. The telephone/IP server functions to accept inputs from the telephone end user as speech or DTMF signals, and act as a proxy browser for that end user in making requests over the Internet to the web servers that provide the IVR services with which the end user wishes to interact. Whereas the language format between a browser on an end user's client terminal and a web server is conventionally the hypertext markup language (HTML), the telephone/IP server and the web servers providing the IVR services communicate using a modification of HTML, the phone markup language (PML) described in the aforenoted article by J. C. Ramming. As noted, PML will be supplanted in the future with the expected-to-be standardized voice extensible markup language.
The telephone/IP server includes the necessary interpreter middleware that interacts with the services on the web server to interpret dialogs to be carried out with the end user. Such dialog interpretation involves coordination of the lower-level audio processing necessary to interact with the end user, and communication of the results of a dialog with the end user to the IVR service on the web server that specified it.
A dialog includes information to be presented to the end user, and may specify information to be collected from the end user. It is, in effect, an audio “form” that is filled out by the end user, using DTMF tones or audio input, and returned to an interactive voice service. A dialog may involve multiple prompts and multiple collections of user inputs. Moreover, the dialog may specify control flow information, if the sequencing of interactions is dependent on what the end user inputs. For example, only a subset of information might be audibly presented to the end user if the user makes choices from a hierarchical menu. Alternatively, it may be necessary to re-
Ball Thomas J.
Danielsen Peter John
Mataga Peter Andrew
Rehor Kenneth G.
Gurey Stephen M.
Lucent Technologies - Inc.
Nguyen Chau
Waite Scott
LandOfFree
Method of providing transfer capability on web-based... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method of providing transfer capability on web-based..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of providing transfer capability on web-based... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3052209