Method of manufacturing a semiconductor device having a...

Semiconductor device manufacturing: process – Making field effect device having pair of active regions... – On insulating substrate or layer

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C438S166000, C438S482000, C438S486000

Reexamination Certificate

active

06506636

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a method of manufacturing a semiconductor device, such as a thin film transistor (hereinafter referred to as a TFT), using a crystalline semiconductor film formed on a substrate. The semiconductor device fabricated by the present invention includes not only an element such as a TFT or a MOS transistor, but also a liquid crystal display device, an EL (Electro Luminescence) display device, an EC (Electro Chromic) display device, an image sensor, or the like, each including a semiconductor circuit (microprocessor, signal processing circuit, high frequency circuit, etc.) constituted by insulated gate transistors.
2. Description of the Related Art
At present, as a semiconductor element using a semiconductor film, a thin film transistor (hereinafter referred to as a TFT) is used for each integrated circuit, and is especially used as a switching element of an image display device. Further, a TFT using as an active layer a crystalline semiconductor film having higher mobility than an amorphous semiconductor film has high drive capability and is also used as an element of a driving circuit.
As a method of obtaining a crystalline semiconductor film, a thermal annealing method, a laser annealing method, or techniques disclosed in Japanese Patent Application Laid-Open No. Hei. 7-130652 and No. Hei. 8-78329 by the present assignee are well known. The technique disclosed in the publications uses a metal element (especially nickel (Ni)) for promoting crystallization of silicon to enable the formation of a crystalline silicon film having excellent crystallinity by a heat treatment at 500 to 600° C. for about 4 hours.
Reliability is regarded as most important in evaluation of a TFT. As a factor to lower the reliability, an impurity in the TFT (hereinafter, an impurity to lower the reliability of a TFT is called a contaminant impurity in the present specification) can be mentioned. The contaminant impurity is mixed in the TFT from various contaminating sources such as the air, a glass substrate, and a manufacturing apparatus. Particularly, that the contaminant impurity exists on an interface of films constituting the TFT is a great factor to damage the reliability of the TFT.
Besides, among things indicating electrical characteristics of a TFT, there is a threshold voltage (Vth). In general, there is a method of adding boron (B) as an impurity element to give a p-type into a crystalline semiconductor film in order to control the threshold voltage (Vth) of an n-channel TFT.
It is difficult to continuously conduct all steps of forming and treating respective films constituting a TFT. For example, a crystalline semiconductor film is obtained by using a method of crystallizing an amorphous semiconductor film by heat, laser light or the like. In general, a film formation apparatus and a furnace or a laser apparatus, for a heat treatment are respectively independent of each other. Besides, if a film formation apparatus is used, in which only one kind of film can be formed, though the apparatus includes a single or a plurality of film formation chambers, the surface of a substrate is exposed to a clean room atmosphere each time the film formation is made. Accordingly, it becomes necessary to provide a step of washing the surface of a film prior to a next treatment. However, the substrate is also exposed to the air atmosphere until it is put in the film formation apparatus from a washer.
A semiconductor device is generally fabricated in a clean room. In the clean room, although a filter is used to remove dirt, dust, contaminant substance or the like from the outer air to be taken in, a lot of contaminant impurities generated from the filter itself, especially boron (B) or a lot of contaminant impurities from a person working in the clean room, especially sodium (Na) exist in the clean room atmosphere. That is, the surface of the substrate is contaminated by merely exposing the substrate to the clean room atmosphere.
Besides, if an impurity is put in a regular crystal structure, the regular crystal structure is broken. That is, that the boron (B) to give a p-type is added to a crystalline semiconductor film in order to control a threshold voltage (Vth) breaks the crystal structure of the crystalline semiconductor film, and there is a possibility that the drive capability of the TFT is lowered.
SUMMARY OF THE INVENTION
An object of the present invention is to keep an interface of respective films constituting a TFT in a clean state without being contaminated by a contaminant impurity.
Another object of the present invention is to add an impurity element to give a p-type into an n-channel TFT without breaking the crystal structure of a crystalline semiconductor film.
In order to achieve the above object, the present invention is characterized in that in a film formation apparatus including a plurality of film formation chambers, steps from formation of a base film to formation of a silicon oxide film as a protective film for addition of an impurity element to give a p-type into an n-channel TFT are continuously conducted without being exposed to a clean room atmosphere. In other words, the present invention is characterized in that contamination of an interface of the respective films is prevented by using the film formation apparatus including the plurality of film formation chambers.
Besides, in order to achieve the above object, the present invention is characterized in that a washing room for removing a contaminant impurity on a surface of a film is provided for a laser apparatus, and steps from contaminant impurity removal of the surface of the film to laser annealing are continuously conducted.
In the above constitution, the contaminant impurity removal of the surface of the film is carried out in such a manner that after washing is carried out by pure water dissolving ozone therein, an acid solution containing fluorine is used to etch the surface of the film very slightly.
As means for carrying out etching very slightly, such a method is effective that a spin apparatus is used to spin a substrate, and the acid solution containing fluorine which is brought into contact with the surface of the film is scattered.
The reason why the pure water containing ozone is used is as follows:
(1) A very thin oxide film is formed on the surface of a first film by ozone, and a contaminant impurity adsorbed on the surface of the first film, together with the very thin oxide film, can be subsequently removed by using the acid solution containing fluorine.
(2) In the case where the first film is hydrophobic, the surface of the first film is changed to be hydrophilic by oxidizing the surface with ozone, and a cleaning effect is improved.
(3) A very small amount of carbide material existing in a clean room atmosphere can be removed through oxidation and decomposition by ozone.
As the acid solution containing fluorine, hydrofluoric acid, dilute hydrofluoric acid, ammonium fluoride, buffered hydrofluoric acid (mixed solution of hydrofluoric acid and ammonium fluoride), mixed solution of hydrofluoric acid and hydrogen peroxide water, or the like can be used.
Accordingly, the semiconductor device of the present invention is characterized in that a spin type washer is provided in a washing chamber, and pure water in which ozone is dissolved and an acid solution containing fluorine are used as a washing liquid, so that the contaminant impurity on the surface of the film constituting the TFT is removed.
Besides, in order to achieve the object with respect to the crystal structure breakdown, the present invention is characterized in that after boron (B) as an impurity element to give a p-type is added to an amorphous semiconductor film in an n-channel TFT, crystallization is carried out.


REFERENCES:
patent: 5643826 (1997-07-01), Ohtani et al.
patent: 5861337 (1999-01-01), Zhang et al.
patent: 6074901 (2000-06-01), Ohtani et al.
patent: 6156997 (2000-12-01), Yamazaki et al.
patent: 6177302 (2001-01-01), Yamazaki et al.
patent: 6303963 (200

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of manufacturing a semiconductor device having a... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of manufacturing a semiconductor device having a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of manufacturing a semiconductor device having a... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3054600

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.