Method of manufacturing a semiconductor component

Radiation imagery chemistry: process – composition – or product th – Imaging affecting physical property of radiation sensitive... – Making electrical device

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C430S005000, C430S395000, C430S396000

Reexamination Certificate

active

06596465

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates, in general, to electronics and, more particularly, to methods of manufacturing semiconductor components.
Semiconductor devices such as, for example, transistors in semiconductor components are manufactured using lithographic techniques. It is difficult to utilize conventional lithographic techniques to manufacture features with dimensions of less than 180 nanometers (nm). Accordingly, new lithographic techniques have been developed to more reliably manufacture sub-quartermicron features. As an example, Extreme Ultra-Violet Lithography (EUVL) can be used to manufacture features with dimensions of less than approximately 0.25 microns.
EUVL uses extreme ultra-violet radiation having a wavelength in the range of 4 to 25 nm to carry out projection imaging. EUVL masks are reflective in nature and are not transmissive like masks for other lithographic technologies such as conventional optical photolithography, SCattering with Angular Limitation Projection Electron beam Lithography (SCALPEL) or X-Ray Lithography (XRL). EUVL masks comprise a patterned EUV radiation absorber on top of a multi-layered film that is reflective at EUV wavelengths.
Radiation absorbers in EUVL masks have been fabricated using a two-layer process that involves a repair buffer layer of silicon dioxide and a radiation absorbing layer of aluminum-copper, titanium nitride, or the like. One problem with this two-layer process is the difficulty in patterning the repair buffer layer without damaging the underlying reflective multi-layered film. The buffer layer can be patterned with a reactive ion etching technique, but a high etch selectivity to the underlying multi-layered film is difficult to achieve. A wet etch to pattern the buffer layer can result in an undercutting of the buffer layer beneath the patterned absorber layer, and this undercutting produces other problems.
Accordingly, a need exists for an improved method of manufacturing a semiconductor component having submicron features. If an EUVL process is used in the manufacturing method, the EUVL masks should be substantially defect free, and the peak reflectivity and bandpass at the EUV wavelengths should remain unchanged before and after the patterning of the radiation absorbing layer.


REFERENCES:
patent: 5052033 (1991-09-01), Ikeda et al.
patent: 5190836 (1993-03-01), Nakagawa et al.
patent: 5464711 (1995-11-01), Mogab et al.
patent: 5503950 (1996-04-01), Miyake et al.
patent: 5521031 (1996-05-01), Tennant et al.
patent: 5641593 (1997-06-01), Watanabe et al.
patent: 5928817 (1999-07-01), Yan et al.
patent: 5935737 (1999-08-01), Yan
patent: 6178221 (2001-01-01), Levinson et al.
A.M. Hawryluk, et al., EUV Reticle Pattern Repair Experiments Using 10 KeV Neon Ions, OSA Proceedings on Extreme Ultraviolet Lithography, 1994, vol. 23, pp. 204-208.
Khanh B. Nguyen, et al., Defects in Coatings Deposited by Planar Magnetron Sputtering: Measurements with a Tencor Surfscan 6200, OSA Proceedings on Extreme Ultraviolet Lithography, 1994, vol. 23, pp. 209-216.
D.R. Kania, et al., Quartz Substrates for EUV Lithography Reticles, OSA Proceedings on Extreme Ultraviolet Lithography, 1994, vol. 23, pp. 217-221.
Paul B. Mirkarimi, Stress, reflectance, and temporal stability of sputter-deposited Mo/Si and Mo/Be multilayer films for extreme ultraviolet lithography, Paper 980417, Published Jan. 21, 1999, Optical Engineering, vol. 38 No. 7, Jul. 1999, pp. 1246-1259.
Andrew M. Hawryluk et al., Repair Of Opaque Defects On Reflection Masks For Soft X-Ray Projection Lithography, 1992 American Vacuum Society, J. Vac. Sci. Technol. B 10(6), Nov./Dec. 1992, pp. 3182-3185.
D.M. Tennant et al., Reflective Mask Technologies And Imaging Results In Soft X-Ray Projection Lithography, 1991 American Vacuum Society, J. Vac. Sci. Technol. B9 (6) Nov./Dec. 1991, pp. 3176-3183.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of manufacturing a semiconductor component does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of manufacturing a semiconductor component, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of manufacturing a semiconductor component will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3001411

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.