Method of making high density integral test probe

Metal working – Method of mechanical manufacture – Electrical device making

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C324S754090, C324S762010, C439S066000

Reexamination Certificate

active

06332270

ABSTRACT:

FIELD OF THE INVENTION
The present invention is directed to probe structures for testing of electrical interconnections to integrated circuit devices and other electronic components and particularly to testing integrated circuit devices with high density areas array solder ball interconnections at high temperatures.
BACKGROUND OF THE INVENTION
Integrated circuit (IC) devices and other electronic components are normally tested to verify the electrical function of the device and certain devices require high temperature burn-in testing to accelerate early life failures of these devices. Wafer probing is typically done at temperatures ranging from 25 C.-125 C. while typical burn-in temperatures range from 80 C. to 140 C. Wafer probing and IC chip burn-in at elevated temperatures of up to 200 C. has several advantages and is becoming increasingly important in the semiconductor industry.
The various types of interconnection methods used to test these devices include permanent, semi-permanent, and temporary attachment techniques. The permanent and semi-permanent techniques that are typically used include soldering and wire bonding to provide a connection from the IC device to a substrate with fan out wiring or a metal lead frame package. The temporary attachment techniques include rigid and flexible probes that are used to connect the IC device to a substrate with fan out wiring or directly to the test equipment.
The permanent attachment techniques used for testing integrated circuit devices such as wire bonding to a leadframe of a plastic leaded chip carrier are typically used for devices that have low number of interconnections and the plastic leaded chip carrier package is relatively inexpensive. The device is tested through the wire bonds and leads of the plastic leaded chip carrier and plugged into a test socket. If the integrated circuit device is defective, the device and the plastic leaded chip carrier are discarded.
The semi-permanent attachment techniques used for testing integrated circuit devices such as solder ball attachment to a ceramic or plastic pin grid array package are typically used for devices that have high number of interconnections and the pin grid array package is relatively expensive. The device is tested through the solder balls and the internal fan out wiring and pins of the pin grid array package that is plugged into a test socket. If the integrated circuit device is defective, the device can be removed from the pin grid array package by heating the solder balls to their melting point. The processing cost of heating and removing the chip is offset by the cost saving of reusing the pin grid array package.
The most cost effective techniques for testing and burn-in of integrated circuit devices provide a direct interconnection between the pads on the device to a probe sockets that is hard wired to the test equipment. Contemporary probes for testing integrated circuits are expensive to fabricate and are easily damaged. The individual probes are typically attached to a ring shaped printed circuit board and support cantilevered metal wires extending towards the center of the opening in the circuit board. Each probe wire must be aligned to a contact location on the integrated circuit device to be tested. The probe wires are generally fragile and easily deformed or damaged. This type of probe fixture is typically used for testing integrated circuit devices that have contacts along the perimeter of the device. This type of probe cannot be used for testing integrated circuit devices that have high density area array contacts. Use of this type of probe for high temperature testing is limited by the probe structure and material set.
High temperature wafer probing and burn-in testing has a number of technical challenges. Gold plated contacts are commonly used for testing and burn-in of IC devices. At high temperatures, the gold plated probes will interact with the solder balls on the IC device to form an intermetallic layer that has high electrical resistance and brittle mechanical properties. The extent of the intermetallic formation is dependent on the temperature and duration of the contact between the gold plated probe and the solder balls on the IC device. The gold-tin intermetallic contamination of the solder balls has a further effect of reducing the reliability of the flip chip interconnection to the IC device. Another problem caused by the high temperature test environment is diffusion of the base metal of the probe into the gold plating on the surface. The diffusion process is accelerated at high temperatures and causes a high resistive oxide layer to form on the surface of the probe contact.
OBJECT OF THE INVENTION
It is the object of the present invention to provide a probe for testing integrated circuit devices and other electronic components that use solder balls for the interconnection means.
Another object of the present invention is to provide a probe that is an integral part of the fan out wiring on the test substrate or other printed wiring means to minimize the contact resistance of the probe interface.
A further object of the present invention is to provide an enlarged probe tip to facilitate alignment of the probe array to the contact array on the IC device for wafer probing.
An additional object of the present invention is to provide a suitable contact metallurgy on the probe surface to inhibit oxidation, intermetallic formation, and out-diffusion of the contact interface at high temperatures.
Yet another object of the present invention is to provide a suitable polymer material for supporting the probe contacts that has a coefficient of thermal expansion that is matched to the substrate material and has a glass transition temperature greater than 200 C.
Yet a further object of the present invention is to provide a probe with a cup shaped geometry to contain the high temperature creep of the solder ball interconnection means on the integrated circuit devices during burn-in testing.
Yet an additional object of the present invention is to provide a probe with a cup shaped geometry to facilitate in aligning the solder balls on the integrated circuit device to the probe contact.
SUMMARY OF THE INVENTION
A broad aspect of the claimed invention is an apparatus for electrically testing a work piece having a plurality of electrically conductive contact locations thereon having: a substrate having a first surface and a second surface; a plurality of first electrical contact locations on the first side; a plurality of probe tips disposed on the first contact locations; each of the probe tips having an elongated electrically conductive member projecting from an enlarged base, the base being disposed on said contact locations; and, means for moving said substrate towards the work piece so that the plurality of probe tips are pressed into contact with the plurality of contact locations on said work piece.
Another broad aspect of the present invention is a method including the steps of: providing a substrate having a surface; bonding an elongated electrical conductor to the surface by forming a ball bond at the surface; shearing said elongated conductor from said ball bond leaving an exposed end of said elongated conductor, and flattening the exposed end.


REFERENCES:
patent: 5785538 (1998-07-01), Beaman et al.
patent: 5811982 (1998-09-01), Beaman et al.
patent: 5914614 (1999-06-01), Beaman et al.
patent: 5952840 (1999-09-01), Farnworth et al.
patent: 6062879 (2000-05-01), Beaman et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of making high density integral test probe does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of making high density integral test probe, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of making high density integral test probe will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2565465

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.