Method of making a high utility tissue

Paper making and fiber liberation – Processes and products – Non-fiber additive

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C162S109000, C162S111000, C162S179000, C162S180000, C162S173000, C162S172000, C162S183000

Reexamination Certificate

active

06758943

ABSTRACT:

FIELD OF THE INVENTION
This invention generally relates to the field of paper making, and more specifically, to a tissue with strikethrough resistance.
BACKGROUND
A user often uses more tissue than necessary, especially after urination. The user often uses excessive tissue to prevent urine or other liquid from passing from one side of the tissue to the opposite side, next to the user's hand. Using excessive tissue results in tissue waste, which expends economic resources and degrades the environment.
Accordingly, a tissue product that has a relatively long absorbency rate to delay liquid from saturating the tissue and pass from one side of the tissue to the other, would be desirable. In addition, such a tissue product would have a reasonable absorbency capacity to absorb liquid. The tissue product would also, ideally, break up relatively rapidly after being immersed in liquid. Such a tissue product having these attributes would reduce tissue consumption waste while addressing economic and environmental issues.
DEFINITIONS
As used herein, the term “repellant agent” refers to an agent that resists absorption of a liquid, desirably an aqueous liquid. The repellant agent may repel liquids by filling interstitial voids in the fibrous structure of a tissue or by coating individual fibers thereby preventing liquids from being absorbed by and passing through the fibers to the interior of the fibrous structure, as measured by test procedure ASTM D 779-94. When repellant action is accomplished, the contact angle at the fiber surface is about 90 degrees or greater, as measured by test procedure ASTM D 5725-95 or TAPPI Test Method T-458. The repellant agent is preferably a hydrophobic chemical, and may include other materials, such as sizing agents, waxes, and latexes, may also be included. When included, the amounts of the other materials comprise less than 20% of the total composition of the repellant agent, preferably less than 10% of the total composition of the repellant agent, and more preferably less than 5% of the total composition of the repellant agent, and even more preferably less than 2% of the total composition of the repellant agent. By way of example only, a suitable repellant agent is a hydrophobic chemical having a primary composition comprising mono- and distearamides of aminoethylethanolamine, such as:
C
17
H
35
CONHCH
2
CH
2
NHCH
2
CH
2
OH
or
(C
17
H
35
C0)
2
NCH
2
CH
2
NHCH
2
CH
2
0H
One such agent is sold under the trade name REACTOPAQUE (hereinafter “RO”) by Sequa Chemicals, Inc., at One Sequa Dr., Chester, S.C. 29706. The amount of repellant agent added to the fibers may be from about 2 to about 20 pounds of active ingredient per ton of fiber, more specifically from about 3 to about 15 pounds of active ingredient per ton of fiber, still more specifically, from about 4 to about 12 pounds of active ingredient per ton of fiber, and even more specifically, from about 6 to about 10 pounds of active ingredient per ton of fiber.
As used herein, the term “latex” refers to a colloidal water dispersion of high polymers from sources related to natural rubber, such as Hevea tree sap, or of synthetic high polymers that resemble natural rubber. Synthetic latexes may be made by emulsion polymerization techniques from styrene-butadiene copolymer, acrylate resins, polyvinyl acetate, and other materials.
As used herein, the term “wax” refers to aqueous emulsions of small particles held in suspension by emulsifying agents and may include materials such as paraffin waxes, microcrystalline wax, or other waxes.
As used herein, the term “sizing agent” refers to any chemical inhibiting liquid penetration to cellulosic fiber structures. Suitable sizing agents are disclosed in a test entitled, “Papermaking and Paper Board Making”” second edition, Volume III, edited by R. G. Macdonald, and J. N. Franklin, which is hereby incorporated by reference herein.
As used herein, the term “strikethrough resistance” refers to a characteristic of a tissue product which slows or impedes the movement of liquid from one surface of the tissue to the opposite surface. Such a tissue product has a relatively high absorbency rate, i.e., of at least 10 seconds, but still has a reasonable gms/gms absorbency capacity. For example, a tissue product having a basis weight of about 10 gsm to about 35 gsm, and more desirably about 27 gsm, may have an absorbency rate desirably between about 10 seconds to about 430 seconds, and more desirably between about 10 seconds and about 30 seconds, and an absorbency capacity desirably between about 7 gms/gms to about 13 gms/gms. In another example, a tissue product having a basis weight of about 10 gsm to about 45 gsm, and more desirably, about 33 gsm (each ply having a basis weight of about 16 gsm), may have an absorbency rate desirably between about 10 seconds to about 430 seconds, and still more desirably between about 10 seconds to about 30 seconds, and may have an absorbency capacity desirably between about 7 gms/gms to about 13 gms/gms.
As used herein, the term “layer” refers to a single thickness, course, stratum, or fold that may lay or lie on its own, or, that may lay or lie over or under another.
As used herein, the term “ply” refers to a material having one or more layers. An exemplary toilet tissue product having a single ply structure is illustrated in
FIGS. 1-2
; an exemplary toilet tissue product having a two-ply structure is depicted in FIG.
3
.
As used herein, the term “cellulosic material” refers to material that may be prepared from cellulose fibers from synthetic sources or natural sources, such as woody and non-woody plants. Woody plants include, for example, deciduous and coniferous trees. Non-woody plants include, for example, cotton, flax, esparto grass, milkweed, straw, jute, hemp, and begasse. The cellulose fibers may be modified by various treatments such as, for example, thermal, chemical, and/or mechanical treatments. It is contemplated that reconstituted and/or synthetic cellulose fibers maybe used and/or blended with other cellulose fibers of the fibrous cellulosic material. Desirably, no synthetic fibers are woven into the cellulosic fibers.
As used herein, the term “pulp” refers to cellulosic fibrous material from sources such as woody and non-woody plants. Woody plants include, for example, deciduous and confierous trees. Non-woody plants include, for example, cotton, flax, esparto grass, milkweed, straw, jute, hemp, and bagasse. Pulp may be modified by various treatments such as, for example, thermal, chemical and/or mechanical treatments. Desirably, no synthetic fibers are woven into the pulp fibers.
As used herein, the term “basis weight” (hereinafter may be referred to as “BW”) is the weight per unit area of a sample and may be reported as gram-force per meter squared. The basis weight may be measured using test procedure ASTM D 3776-96 or TAPPI Test Method T-220.
As used herein, the term “wet strength agent” refers to a “temporary” wet strength agent. For purposes of differentiating permanent from temporary wet strength, permanent will be defined as those resins which, when incorporated into paper or tissue products, will provide a product that retains more than 50% of its original wet strength after exposure to water for a period of at least five minutes. Temporary wet strength agents are those which show less than 50% of their original wet strength after exposure to water for five minutes. Only temporary wet strength agents find application in the present invention. The amount of wet strength agent added to the pulp fibers can be at least about 0.1 dry weight percent, more specifically from about 0.2 dry weight percent or greater, and still more specifically from about 0.1 to about 3.0 dry weight percent based on the dry weight of the fibers.
The temporary wet strength resins that can be used in connection with this invention include, but are not limited to, those resins that have been developed by American Cyanamid and are marketed under the name PAREZ 631-NC (now available from Cytec Industries, West Paterson, N.J.). This and sim

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of making a high utility tissue does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of making a high utility tissue, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of making a high utility tissue will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3218255

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.