Fluent material handling – with receiver or receiver coacting mea – Filling means with receiver or receiver coacting means – Continuous flow or overflow type supply
Reexamination Certificate
2002-04-30
2004-01-13
Huson, Gregory (Department: 3721)
Fluent material handling, with receiver or receiver coacting mea
Filling means with receiver or receiver coacting means
Continuous flow or overflow type supply
C141S001000, C141S010000, C141S325000, C383S102000
Reexamination Certificate
active
06675844
ABSTRACT:
The invention relates to a method of loading moist, sticky or statically charged bulk material, in particular catalyst material, into fluid pervious containers.
BACKGROUND OF THE INVENTION
The published specifications DE 197 01 045 A1 and EP 0 640 385 A1 (=U.S. Pat. No. 5,536,699) disclose catalyst packaging which is provided with closable bags into which catalyst material can be introduced as bulk material and which are reusable to at least some extent when the catalyst is replaced. The filling of the catalyst bags or the replacement of the catalyst in the bags, in particular the filling of the catalyst bags, is in practice time-consuming and associated with further problems, since the catalyst material is frequently moist, sticky or statically charged and therefore does not flow readily.
SUMMARY OF THE INVENTION
It is an object of the invention to provide a method which makes it possible for packaging or containers of the type mentioned to be readily and quickly filled with moist, sticky or statically charged bulk material.
This object is achieved by a method of loading moist, sticky or statically charged bulk material, in particular catalyst material, into fluid-pervious containers which have a multiplicity of fine openings, wherein the bulk material is conveyed from a reservoir as a suspension or dispersion in a fluid, preferably a liquid, particularly preferably in water, and is introduced into the container through an opening in the container and in that the fluid exits through a multiplicity of openings in the container while the bulk material is retained in the container; and the fluid is recirculated to the reservoir.
DETAILED DESCRIPTION
The containers are preferably configured as a series of individual compartments in strip form, and are preferably formed of a woven metal mesh.
The method is suitable for introducing solid, granular or gel-form, catalytically, biologically or adsorptively active materials of various particle sizes, as finely divided particles suspended or dispersed in a fluid, into structured fluid-pervious containers which can serve dual functions. The first of said dual functions is to provide a very high contact area between two or more phases, for mass transfer between them. The structured fluid-pervious containers comprise closed fluid-pervious compartments comprised of a woven mesh or fabric, or of a membrane which is permeable to at least one fluid present in the process in which the loaded containers are to be used. The solid material which, as a second function, is active in the process in which it is used is present in the compartments and remains in the compartments after the compartments are closed, subsequent to being filled with the solid material. It is possible to vary the volume and number of the compartments in the containers, as well as the degree of fill of the container compartments in accordance with the requirements of the process in which they are used and the characteristics of the active solid material.
It can be a substantial advantage in various physicochemical processes for chemical, biological or other materials conversion processes to be superimposed on physical mass transfer processes, e.g. rectification or absorption, and vice versa. It is necessary to provide, on the one hand, a contact area sufficient for mass transfer between the fluid phases and, on the other hand, a very large active surface to achieve the dual functionality, with both functions, viz. mass transfer and materials conversion, having to be able to be varied to a wide degree in accordance with process requirements.
In such a context, catalytically active mass transfer packing is used for particular applications, e.g. heterogeneously catalyzed chemical reactions in the liquid phase, and is described, inter alia, in the patent specifications DE 197 01 045 A1, EP 0 631 813 A1, WO 98/58721 and WO 97/24174.
A significant disadvantage of the known apparatuses for simultaneously carrying out mass transfer and materials conversion is the comparatively great effort required to introduce the catalytically or biologically or absorptively active materials into the containers to be used, which sometimes have a complicated geometry. In particular, filling of the containers with such materials can be difficult or problematical from the point of view of occupational hygiene when the materials are not-free-flowing, or are sticky or dust-forming or gas-releasing or statically charged solids or granular materials or gel-form solids. In the hitherto customary procedure for filling the container compartments in structured packing having dual functionality, a basic prerequisite is for the material to be introduced to flow more or less well. In the filling procedure, the material which is catalytically active, biologically active or otherwise active is first conveyed manually or mechanically via a funnel or a similar device through a filling orifice of the chambers into the latter and is then distributed as uniformly as possible in the chamber by means of, for example, a shaking motion.
In the above-described prior art method, particularly in the case of granulated materials which have very poor flow, there are numerous difficulties, e.g. non-uniform distribution of the material in the chambers, voids or differing degrees of fill of the individual chambers, etc.
It is therefore an object of the present invention to provide a significantly simplified and practical method which offers significant advantages in respect of the abovementioned difficulties in filling the chambers. In addition, the time and effort required for filling the dual function elements should be significantly reduced. This object is achieved by the method of the invention.
In particular, the method of the invention for introducing solid, granular, catalytically, biologically or adsorptively active materials into structured multipurpose packing with dual function elements involves introducing the active material in the form of finely divided solid particles as a suspension or dispersion in a fluid into openings in the compartments of the container. The solid material is retained within the compartments, because the openings of the mesh forming the compartment walls are too small for the solid to pass through, but at the same time the mesh walls are permeable to the fluid, which therefore passes through the compartment walls and flows out. When the walls are formed of a membrane, the membrane allows the fluid, but not the solid material, to pass through. After the compartments are filled with the desired or predetermined amount of solid material, the openings through the materials were introduced are closed.
The present invention is therefore a method of loading moist, sticky or statically charged bulk material into a fluid pervious container having an opening for receiving said bulk material, which comprises conveying a bulk material, as a suspension or dispersion in a fluid, from a reservoir, and introducing said suspension or dispersion into the fluid-pervious container through said opening in the container to pass the fluid component of the suspension or dispersion through and out of the fluid-pervious container while retaining the bulk material within the container, and recirculating the fluid to the reservoir
In one embodiment of the method, a flowable solid/liquid suspension or dispersion is produced in a fluidization vessel in a first step. The fluidization vessel is preferably a vessel or reactor which is provided with a stirrer as mixing element. Alternatively, the suspension or dispersion can also be produced merely by introduction of the fluid used for mixing or a second fluid into the fluidization vessel.
In this way, even granular materials which do not flow or flow only with difficulty, (e.g. ion-exchange resins which are moist with water or are impregnated with organic solvents) can be brought into a form which can be conveyed continuously. Furthermore, it is possible, for example, to avoid the formation of dusts during filling by the production of a suspension in a liquid, or to ov
Gottschalk Lutz
Müller Dirk
Prein Michael
Ronge Georg
Schäfer Johannes-Peter
Bayer Aktiengesellschaft
deVore Peter
Huson Gregory
Norris & McLaughlin & Marcus
LandOfFree
Method of loading moist, sticky bulk material into a fluid... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method of loading moist, sticky bulk material into a fluid..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of loading moist, sticky bulk material into a fluid... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3200095