Method of integrated circuit design by selection of noise...

Computer-aided design and analysis of circuits and semiconductor – Nanotechnology related integrated circuit design

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C716S030000, C716S030000

Reexamination Certificate

active

06490708

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Technical Field
This invention generally relates to electronic circuits, and more specifically relates to a method for electronic circuit design.
2. Background Art
Integrated circuits (ICs) are semiconductor devices consisting of many components arranged on a base called a wafer. Semiconductors are formed from material that allows current to flow under certain circumstances, making them indispensable in all sorts of environments from computers to cellular phones to calculators and beyond. ASICs are integrated circuits that are designed to perform a specific function for a specific customer, such as a chip that controls a talking toy or a chip for use in a communications satellite. Frequently an ASIC will share some features with other ASICs previously produced. This partial duplication leads to the creation of standard cell libraries made up of components that perform certain logical functions. These components—the cells—themselves consist of more basic units called devices. When an ASIC's design calls for a certain function to be performed, a cell that accomplishes that function can be selected from the cell library instead of being designed from the ground up. This time-saving step becomes very important when it is considered that large ASIC manufacturers may produce several hundred ASICs in a year.
The design phase of an ASIC includes the performance of various tests to ensure the chip meets critical performance criteria, including the two fundamental concerns in chip design: timing and noise, which are defined in the next two paragraphs. If these or any other chip requirements are not met the chip must be redesigned and retested until they are. The redesign of a circuit involves such steps as altering the physical layout of chip cells, replacing certain cells with new cells, and changing chip parameters like power level or cell size.
The current trend in semiconductor design is toward lower operating power. Lower power means lower voltages supplied to the semiconductor, and lower voltages at which the semiconductor switches. This latter voltage for a cell is called the switching threshold for the cell. This switching threshold for the cell is the value of the input signal such that an input less than this value will be recognized by the cell as a “zero,” and an input greater than this value will be recognized as a “one.” Because cells work by being switched on or off in response to precise voltage signals, it is important that those signals are not the result of unwanted noise in the circuit. In this context, “noise” refers to an unwanted electromagnetic disturbance that reduces the clarity of a signal. Here, the signal is an input voltage sufficiently far above or below the cell threshold as to be unambiguously recognized as either a “zero” or a “one” telling the cell to turn on or turn off. The disturbance is any such unwanted signal that exceeds the cell threshold and causes the cell to switch falsely. As operating power, and thus power grid supply voltage Vdd and cell switching threshold voltages decrease, noise spike voltages become a greater percentage of the switching threshold and become increasingly problematic, causing an increasing number of false switches.
More common than the false switching problem is the problem of switching delay. This is the timing problem mentioned above. Recall that the semiconductors which are the building blocks of all integrated circuits are materials that sometimes allow and sometimes prevent the flow of current. The opposite states of current flow and current cessation are sometimes referred to as “on” and “off” or as “0” and “1” respectively. Timing errors can occur when adjacent wires undergo transitions that interfere with each other. For example, when one wire, the victim, is attempting a transition from on to off, an adjacent wire, the aggressor, might be transitioning from off to on. While the aggressor's effect might be insufficient to cause a false switch (a voltage rise corresponding to the on position) in the victim, it can sometimes be enough to delay or even reverse for a moment the desired transition in the victim, thus preventing a smooth switch and lengthening the time needed for it. This is one way in which noise problems lead to timing problems.
One approach to fixing the noise/timing problem is to adjust various parameters of the system such as spacing, power, and cell size. Spacing adjustments, for example, are effective because they change the coupling capacitance between adjacent conductors. In other words, because noise can be coupled from one conductor to another by their mutual capacitance, increasing the separation between these wires reduces coupling capacitance and therefore reduces the amount of noise injected.
The effects of such changes or adjustments, whether to spacing, power, or some other parameter, can be predicted with reasonable accuracy; the difficulty lies in the fact that it is nearly impossible to predict exactly which change out of an uncountably large number of possible changes is necessary to fix a specific problem. Trial and error, therefore, becomes the only currently viable solution approach, but is itself severely flawed. Besides being inefficient and time consuming, it is ill-equipped to discover problems early in the chip design process. Yet noise sensitivity problems are best discovered as early in the design process as possible in order to avoid the costs of redesign or reconstruction activity.
There also exist farther drawbacks to the solution approach being described. Each parameter adjustment, besides being impossible to select with confidence, poses potentially unwanted and harmful consequences to other parameters in the system. Every adjustment propagates through the system, potentially degrading performance. Trial and error, clearly, leaves much to be desired as an approach to chip-design improvement.
The prior art describes cell libraries-collections of cells useful in redesigning circuits using this trial and error process. The method of replacing an under-performing original cell with an alternate cell from a pre-built cell library is known. A major problem with this basic approach is that a substitution made to fix a problem with one parameter of the IC often creates one or more problems with other parameters. For example, an original cell underperforming with respect to noise tolerance might be replaced with a more noise-tolerant cell. But that replacement cell may create a new set of timing problems that make it just as problematic as the original. A second replacement cell may have altered power requirements that worsen the problem further. Such introduced problems can propagate through the system, causing trouble spots all along the circuit path. Without a way to guarantee that a replacement cell fixes the problem it is intended to solve without causing new problems in the process, such trial and error substitution could potentially fall into an infinite loop where every attempted fix leads to further problems in IC performance. That is a worst-case and perhaps unlikely scenario but it would not be at all uncommon for trial and error problem solving to take at least several hours. With the demand for ASICs growing steadily, time saving techniques—especially in the time—intensive design phase-are becoming increasingly more important. Therefore, there exists a need to provide an efficient way to address and fix ASIC design problems in a manner that avoids the creation of new problems that can propagate through the system.
DISCLOSURE OF INVENTION
According to the present invention, a cell library is provided, each cell having known values of one parameter but having differing values of another parameter. The library cells are ordered in such a way that successive cells in the order exhibit an orderly incrementation of the parameter being changed. Said another way, the cells are ordered from one extreme to the other extreme value of featured parameter F. In one embodiment of the invention the changing parameter can be noise tolera

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of integrated circuit design by selection of noise... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of integrated circuit design by selection of noise..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of integrated circuit design by selection of noise... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2996620

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.