Semiconductor device manufacturing: process – Formation of electrically isolated lateral semiconductive... – Grooved and refilled with deposited dielectric material
Reexamination Certificate
1999-04-14
2001-12-04
Wilczewski, Mary (Department: 2822)
Semiconductor device manufacturing: process
Formation of electrically isolated lateral semiconductive...
Grooved and refilled with deposited dielectric material
C438S221000, C438S435000, C438S437000, C438S788000
Reexamination Certificate
active
06326282
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to a method of fabricating a semiconductor device, and more particularly relates to a method of forming trench isolation with enhanced insulating characteristics thereof and structure formed thereby.
DESCRIPTION OF THE RELATED ART
The technology of isolating devices that are built on a semiconductor substrate becomes one important aspect of the industry of the integrated circuits. Improper device isolation will cause current leakages, which can consume significant power for the entire chip. In addition, improper device isolation can further escalate latch-up to damage the circuit's function momentarily or permanently. Still further, improper device isolation can produce noise margin degradation, voltage shift or crosstalk.
The conventional LOCOS (local oxidation of silicon) process is used to form regions which laterally isolate the active device regions in the integrated circuits. The LOCOS structure is typically formed by using a patterned silicon nitride layer together with a pad oxide underneath, which is utilized to relieve stress caused by the silicon nitride layer, to mask the active regions, followed by ion-implantation in the isolation region, and then growing a thick field oxide locally.
The structure mentioned above possesses some inherent drawbacks resulting from the processes, i.e., lateral oxidation of the silicon underneath the silicon nitride mask, making the edge of the field oxide which resembles the shape of a bird's beak, and the lateral diffusion of channel-stop dopants, making the dopants encroach into the active device regions, making the physical channel width less than the desired channel width. The reduced portion overtaken by both effects will make the situation even worse when devices are scaled down for very large scale integration (VLSI) implementation, increasing the threshold voltage and reducing the current driving capability.
According to the disadvantage mentioned above for the LOCOS isolation structure, an isolation technique by using a shallow trench has been developed. Generally, the shallow trench isolation (hereinafter referred to “STI”) includes the steps of etching a silicon substrate to form a trench; and depositing a CVD oxide layer to fill up the trench; and planarization-etching the CVD oxide layer.
FIGS. 1A
to
1
E schematically show cross-sectional views of the process steps of a prior art method of forming trench isolation in a semiconductor substrate. Referring to
Fig. 1A
, a pad oxide layer
3
, a nitride layer
4
, an HTO (high temperature oxide) layer
5
, and an ARL (anti-reflective layer)
6
are sequentially formed over the semiconductor substrate
2
. A photoresist layer pattern
10
is formed over the ARL
6
to define a trench forming area. Using this patterned photoresist layer
10
as a mask, in order the ARL
6
, HTO oxide layer
5
, silicon nitride layer
4
, and pad oxide layer
3
are etched to form a trench mask
8
, exposing the semiconductor substrate (
2
).
After removing the patterned photoresist layer
10
, the semiconductor substrate
2
is etched to form a trench
12
therein as shown in FIG.
1
B. Preferably, the ARL
6
is concurrently removed. In order to remove substrate damage produced during the aforementioned etching process, a thermal oxide layer
14
is formed on interior walls of the trench
12
, i.e., on bottom and both sidewalls of the trench as shown in FIG.
1
C.
Referring to
FIG. 1D
, the remainder of the trench is completely filled with a dielectric layer such as a USG layer (undoped silicate glass layer)
15
extending on the trench mask (
8
a
). A PE-TEOS (plasma enhanced tetra ethyl ortho silicate) oxide layer
16
is subsequently formed thereon to relieve the stress of the USG layer
15
. A planarization process is carried out down to the nitride layer
4
and thereby the trench isolation
18
is produced as shown in FIG.
1
E. Subsequently the nitride layer
4
and the pad oxide layer
3
are removed by a suitable method.
However, in the STI method, a known problem has been that of stress caused by the dielectric layer, such as the USG layer
15
, filled in the trench on the semiconductor substrate. Furthermore, additional stress is applied to the interior walls of the trench
12
during a later oxidation process such as gate oxide layer formation. In other words, the trench interior walls are subjected to being oxidized, and the oxide layer thus formed causes stress resulting from volume expansion. Such stress causes micro defects i.e., dislocation due to damage of the silicon lattice, or shallow pits on the bottom and sidewalls of the trench, and on the active region of the semiconductor substrate, thereby increasing current leakage, constantly putting the source and drain electrodes of the transistor in a “turned-on” state and, in addition, causing a thinning phenomenon for the gate oxide layer on the edge of the active region in the semiconductor substrate, which degrades the insulating characteristics of the trench isolation.
U.S. Pat. No. 5,447,884, entitled “Shallow Trench Isolation with Thin Nitride Layer” illustrated a silicon nitride liner on the thermal oxide layer that is used to relieve the stress.
In order to uniformly fill a dielectric layer in the trench, plasma processing is carried out conventionally on the interior walls of the trench. However, due to plasma processing in down-stream mode, the silicon nitride layer as a stress relief layer is subjected to being etched or damaged which is not compatible with the aims of the silicon nitride layer.
Accordingly, the prior art method mentioned by the patent cannot avoid the above problems.
SUMMARY OF THE INVENTION
The present invention was made in view of the above problem, and it is therefore an object of the invention to provide a method of forming trench isolation in a semiconductor substrate which can prevent oxidizing the trench interior walls and alleviate a stress induced thereby during trench fill processing or a later oxidation processing.
It is an another object of this invention to provide trench isolation including a first and a second oxide layer formed on the bottom and sidewalls of the trench, a nitride liner disposed therebetween, and a trench fill dielectric layer. Forming an oxide layer on the silicon nitride liner protects the silicon nitride liner during plasma processing, or forming a trench dielectric layer.
To achieve these and other advantages and in accordance with the purpose of the present invention, the method includes sequentially forming a pad oxide layer, a silicon nitride layer, an HTO (high temperature oxide) layer, and an ARL (anti-reflective layer) on a semiconductor substrate. The HTO oxide layer and ARL layer may not be formed depending on the process conditions. These layers are etched to form a trench mask using a patterned photoresist layer. After removing the patterned photoresist layer, the semiconductor substrate is etched using the trench mask. A thermal oxide layer is formed on the bottom and both sidewalls of the trench to remove the substrate damage resulting from the step of etching the semiconductor substrate. A nitride liner is formed on the thermal oxide layer so as to prevent oxidation of the trench in the subsequent oxidation process. This nitride liner is preferably made of a silicon rich nitride layer exhibiting relatively low stress characteristics and serves as a stress buffer layer to relieve the stress applied to the trench interior walls during the subsequent oxidation process. A high temperature oxide layer such as HTO and LP-TEOS oxide layers is formed on the silicon nitride liner. This high temperature oxide layer is provided for the purpose of protecting the silicon nitride liner, i.e., preventing the silicon nitride liner from being damaged or etched during subsequent plasma processing and trench fill dielectric layer forming process. After forming a high temperature oxide layer, a trench fill layer is deposited to fill up the remainder of the trench. The fill dielectric layer may be prefera
Lee Won-seong
Oh Yong-chul
Park Young-woo
Samsung Electronics Co,. Ltd.
Volentine & Francos, PLLC
Wilczewski Mary
LandOfFree
Method of forming trench isolation in a semiconductor device... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method of forming trench isolation in a semiconductor device..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of forming trench isolation in a semiconductor device... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2585351