Method of forming silicon oxy-nitride films by...

Stock material or miscellaneous articles – Composite – Of inorganic material

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C428S446000, C428S212000

Reexamination Certificate

active

06207304

ABSTRACT:

FIELD OF THE INVENTION
The present invention generally relates to an improved method of forming silicon oxy-nitride films in a plasma-enhanced chemical vapor deposition (PECVD) process and more particularly, relates to an improved method of forming silicon oxy-nitride films in a PECVD process substantially without using ammonia as a reactant gas.
BACKGROUND OF THE INVENTION
PECVD is a process widely used in the manufacture of semiconductor devices for the deposition of layers of electronic materials on substrates including that of an insulating glass. In PECVD, a substrate body is placed in a vacuum deposition chamber equipped with a pair of parallel plate electrodes or other electrical sources. The substrate body is generally mounted on a susceptor which also serves as the lower electrode. A flow of a reactant gas is provided in the deposition chamber through a gas inlet manifold which also serves as the upper electrode. A radio frequency (RF) voltage is applied between the two electrodes which generate an RF power sufficient to cause a plasma to be formed in the reactant gas. The plasma causes the reactant gas to decompose and deposit a layer of the desired material on the surface of the substrate body. Additional layers of other electronic materials can be deposited on the first layer by providing in the deposition chamber a flow of a reactant gas containing the material of the additional layer to be deposited. Each reactant gas is subjected to a plasma which results in the deposition of a layer of the desired material.
In a conventional PECVD method used to produce silicon oxy-nitride films, an ammonia-based chemistry is used which requires a reactant gas mixture of silane, nitrous oxide, ammonia and nitrogen. In this ammonia-based reaction, silane supplies the silicon content of the film, nitrous oxide supplies the oxygen content of the film, ammonia supplies the nitrogen content of the film and nitrogen gas functions as a diluent. Ammonia is typically used as the source of nitrogen in a silicon oxy-nitride deposition process by the PECVD technique because it is very difficult to break down the triple bond structure in nitrogen gas.
In recent years, the deposition of silicon oxy-nitride films as a final passivation layer on a semiconductor device has become an important processing step in the manufacture of thin film transistors (TFT). This type of thin film transistor has been used to separately address areas of a liquid crystal cell contained between two glass plates at very fast rates. They are useful for active matrix displays such as those used in TV and computer monitors.
When a silicon oxy-nitride film is deposited as the final passivation layer on a thin film transistor, its deposition temperature is greatly limited due to the presence of the layers already built-up on the transistor and their sensitivity to high temperatures. The temperature limitation for the deposition process of the final silicon oxy-nitride layer is frequently limited to a temperature of less than 250° C. This processing temperature is significantly lower than that normally used for the deposition of silicon oxy-nitride films on Si substrates by a PECVD process, i.e., between 350 to 450° C.
At a low processing temperature of less than 250° C., the ammonia-based chemistry for the formation of silicon oxy-nitride films causes many problems in the quality of the films produced. Problems such as porosity and low density are believed to have been caused by the high content of hydrogen atoms in the film contributed by the hydrogen-rich ammonia. The silicon oxy-nitride films formed at such low processing temperatures by the ammonia-based chemistry contain large numbers of pores which are detrimental to the function of the film as a passivation layer. A porous passivation layer would not longer serve its protective function against either physical abrasion or the penetration of contaminants. The conventional method of using ammonia-based chemistry in producing silicon oxy-nitride films on thin film transistors is therefore unacceptable to the TFT industry.
It is therefore an object of the present invention to provide a method of producing silicon oxy-nitride films at low processing temperatures without using an ammonia-based chemistry.
It is another object of the present invention to provide a method of producing silicon oxy-nitride films on thin film transistors by a PECVD process at a processing temperature lower than 250° C. substantially without using ammonia as a reactant gas.
It is a further object of the present invention to provide an improved method of producing silicon oxy-nitride films on thin film transistor substrates by a PECVD method in which a deposition rate of higher than 200 nm/Min can be achieved at a low processing temperature.
SUMMARY OF THE INVENTION
The present invention provides an improved method of forming silicon oxy-nitride films on substrates in a plasma-enhanced chemical vapor deposition chamber at a low processing temperature.
In a preferred embodiment, the improved method of producing silicon oxy-nitride films utilizes a reactant gas mixture of silane, nitrous oxide and nitrogen at a low deposition temperature of less than 250° C. by flowing the reactant gas mixture through a gas inlet manifold. Preferably, the gas inlet manifold is also an electrode in a plasma-enhanced chemical vapor deposition chamber. The gas inlet manifold is one plate of a parallel plate plasma chamber for communicating the reactant gas into the chamber. The plate has a plurality of apertures, each comprising an outlet at a chamber or processing side of the plate and an inlet spaced from the processing side, with the outlet being larger than the inlet for enhancing the dissociation and reactivity of the gas.
The gas inlet manifold enhance the dissociation of nitrogen gas contained in the reactant gas mixture and provides the nitrogen requirement of the silicon oxy-nitride films. The reaction proceeds at a satisfactory deposition rate, i.e., at about 200 nm/Min., even at low processing temperatures of less than 250° C.
The present invention enables the formation of silicon oxy-nitride films at a satisfactory deposition rate that is suitable for a manufacturing process without the use of ammonia-based chemistry. It substantially eliminates all the drawbacks that are associated with ammonia-based chemistry when such processes are carried out at low processing temperatures. High quality silicon oxy-nitride films without the porosity problems can be produced.
The present invention is further directed to silicon oxy-nitride films produced by an ammonia-free chemistry by using a reactant gas mixture of silane, nitrous oxide and nitrogen. Such films can be produced in a manufacturing process conducted at a low processing temperature of less than 250° C. and at a satisfactory deposition rate.


REFERENCES:
patent: 4543707 (1985-10-01), Ito et al.
patent: 4668365 (1987-05-01), Foster et al.
patent: 4717631 (1988-01-01), Kaganowicz et al.
patent: 4854263 (1989-08-01), Chang et al.
patent: 4895734 (1990-01-01), Yoshida et al.
patent: 5164339 (1992-11-01), Gimpelson
patent: 456199 A3 (1991-11-01), None
patent: 0 501 632 (1992-09-01), None
patent: 518544 A2 (1992-12-01), None
Eriksson et al, “RF Sputtered Silicon-Oxy-Nitride Films”, CIP 85 5th Internal Colloq on Plasmas and Sputtering, Jun. 10-14, 1985, pp. 245-249.
Eriksson et al, “infrared Optical Properties of Silicon Oxzynitride Films: Experimental Data and Theoretical Interpretation”, J. Appl. Phys. vol. 60, No. 6, Sep. 15, 1986, pp. 2061-2091.
Hirao et al, “Properties of Silicon Oxynitride Films Prepared by ECR Plasma CVD Method”. Jp J. Appl. Phys., vol. 27, No. 1, Jan. 1985, pp. L21-L23.
Knolle et al, “Characterization of Oxygen-Doped, Plasma Deposited Silicon Nitride”, J. Electrochem. Soc. vol. 135, No. 5, May 1988, pp. 1211-1217.
Knolle et al, “Plasma Deposited Silicon Oxynitride from Silane, Nitrogen and Carbon Dioxide or Carbon Monoxide or Nitric Oxide”, J. Electrochem. Soc., vol. 139, No. 11, Nov. 1992, pp. 3310-3316.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of forming silicon oxy-nitride films by... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of forming silicon oxy-nitride films by..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of forming silicon oxy-nitride films by... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2527571

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.