Semiconductor device manufacturing: process – Coating with electrically or thermally conductive material – To form ohmic contact to semiconductive material
Reexamination Certificate
2002-06-12
2004-06-22
Le, Dung A. (Department: 2818)
Semiconductor device manufacturing: process
Coating with electrically or thermally conductive material
To form ohmic contact to semiconductive material
C438S638000, C438S672000, C438S673000
Reexamination Certificate
active
06753250
ABSTRACT:
BACKGROUND
This invention relates to low dielectric constant layers for use in various applications. The invention also relates to methods of forming low dielectric constant layers having sufficient structural integrity to allow a wide range of VLSI fabrication operations.
As the features of microelectronic integrated circuits devices are reduced to smaller sizes, the electrical properties of the materials that constitute the devices will require change and improvement. One material that must be improved is the electrical insulator (“dielectric”) used between the wires, metal lines, and other elements of the circuit. Without improvement in the insulator material, there will be increased problems due to capacitive effects such as coupling (crosstalk) and propagation delay. The speed at which future circuits will operate will be limited by RC delay in the interconnect. These difficulties can be mitigated by preparing the circuit using an insulating material that possesses a dielectric constant as low as possible (a “low-k” dielectric layer).
Earlier technology nodes (i.e., the set of VLSI fabrication technologies associated with a particular critical dimension) employed dense materials such as silicon dioxide, silicon nitride, and cured silsesquioxanes as insulators. However, the dielectric constants of these materials range from 3.0-7.0. These values will be inadequate for future circuits. As yet the only fully dense (non-porous) materials with a dielectric constant less than about 2.4 are fluorinated polymers or fully aliphatic hydrocarbon polymers, but these have not met requirements for adhesion and thermal stability.
Thus, considerable effort has been directed towards the development of porous dielectric materials. These can be thought of as composite materials, with the value of their dielectric constants intermediate between that of air (dielectric constant of 1.0) and the fully dense phase. Several classes of dielectric films, including porous oxides, polymers, and porous polymers have been described in the art.
Nanoporous silica films are formed by a variety of techniques. In one example, a process deposits a monomeric precursor such as tetraethyl orthosilicate or TEOS (a siloxane) onto a substrate using a solvent, and then cross-links the precursors to form a continuous porous solid network. The resultant films are dried by direct solvent evaporation or treatment with supercritical fluids. The films are then subjected to a high-temperature annealing step. See for example, Changming et al.,
Materials Research Society Bulletin
, vol. 22, no. 10, pp. 39-42 (1997).
Another technique involves developing inorganic-organic nanophase-separated hybrid polymer materials. These materials comprise organic polymers cast with silsesquioxane-based ladder-type polymeric structures. A casting solvent is used to dissolve the inorganic and organic polymer components. The materials are spin coated onto a substrate and upon application of high temperature, the hybrid phase-separated polymer materials are formed. See for example, Miller et al.,
Materials Research Society Bulletin
, vol. 22, no. 10, pp. 44-48 (1997).
Certain problems arise in VLSI processing of partially fabricated devices having a porous dielectric material. A first problem arises because all porous dielectric materials for integrated circuit applications are “open cell” dielectrics. In other words, the individual pores contact and open into one another. Consequently, the pores of these materials provide long paths throughout the interior of the dielectric material. Gases and liquids contacting the outer surfaces of open cell dielectric materials can thereby penetrate deep into the layer's interior. This gives rise to a particularly difficult problem during conformal depositions of conductive barrier layers or seed layers. Precursor gases or plasma for these processes can penetrate deep into the open cell matrix of the dielectric layer. There they deposit and get converted to the conductive barrier layer or seed layer. This renders large portions of the dielectric layer unacceptably conductive. Examples of extremely conformal deposition processes where the problem is most pronounced include certain forms of chemical vapor deposition (CVD) and atomic layer deposition (ALD). Note that less conformal processes such as physical vapor deposition (PVD) do not deposit conductive material within the pore network, but they do a poor job of covering the discontinuous porous side-walls of a trench or via.
Another problem arises because porous materials lack the mechanical strength of non-porous materials. As a consequence, when a planarization technique such as chemical mechanical polishing (CMP) is employed to remove excess copper or other material, the pressure applied to the wafer during that process can crack or crush the underlying dielectric material.
The current porous materials and associated processing techniques have failed to meet the demands of next generation VSLI fabrication. Obviously, the problems will only get worse as technologies move to ever smaller feature dimensions. Improved materials and processing are required.
SUMMARY
The present invention overcomes these problems with a process that creates small “pores” (typically vertical or columnar gaps) in a pre-formed layer of dense dielectric. Preferably, the pores are formed by a special process that is significantly different from the processes employed to form metal lines and other features on a VLSI device. Further, the columnar gaps are preferably produced only after the planarization process has been completed on a layer that will be made porous. As a consequence, planarization is performed on sturdy, non-porous materials. Later, after the pores are formed, they are capped by depositing another layer of material. In this manner, the newly porous layer is protected from direct exposure to the pressure of subsequent planarization processes. In alternative embodiments, the processes described herein are applied to introduce pores into a pre-formed layer of semiconductor to produce a porous semiconductor layer.
In one aspect, the invention is characterized as a method of forming a low dielectric constant dielectric layer in a semiconductor device. This method includes the following sequence: (a) depositing dielectric and conductive material to form a pattern of conductive lines in a dielectric layer; (b) planarizing the device to produce a planar layer of dielectric (with or without an exposed pattern of the conductive lines); (c) removing or leaving columnar regions of dielectric in the dielectric layer; and (d) depositing material over the columnar regions to form gaps in the dielectric material and thereby lower the effective dielectric constant of the dielectric. In this method, the columnar regions have an average feature dimension substantially smaller than the line width the conductive lines.
The conductive lines are usually a metal such as copper and the dielectric is usually a non-porous material such as silicon oxide, silicon oxycarbide, fluorinated silicate glass, silicon nitride, a spin-on organic material, a spin-on inorganic material, or a spin-on inorganic-hybrid material.
To define the columnar regions of the dielectric layer, one forms a mask over the exposed pattern of conductive lines and dielectric. Actually, two masks may be formed: a primary mask defining the pattern of columnar regions and a secondary mask that receives pattern and protects the unexposed regions during etch. Regardless of whether one or two masks are employed, some embodiments employ a metal oxide mask. Because the columnar regions serve only to introduce porosity, these regions of the mask need not be aligned with the conductive lines. Examples of mechanisms for defining the columnar regions in the mask include diffraction gratings, holographic lithography, particles in a colloidal suspension, pores in a porous material, and channels in a nanochannel array.
Usually, removing or leaving columnar regions of dielectric comprises selectively etching the dielectric layer w
Havemann Robert H.
Hill Richard S.
van den Hoek Willibrordus Gerardus Maria
Beyer Weaver & Thomas LLP
Le Dung A.
Novellus Systems Inc.
LandOfFree
Method of fabricating low dielectric constant dielectric films does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method of fabricating low dielectric constant dielectric films, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of fabricating low dielectric constant dielectric films will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3334811