Semiconductor device manufacturing: process – Coating with electrically or thermally conductive material – To form ohmic contact to semiconductive material
Reexamination Certificate
2000-06-28
2003-10-28
Fourson, George (Department: 2823)
Semiconductor device manufacturing: process
Coating with electrically or thermally conductive material
To form ohmic contact to semiconductive material
C438S638000, C438S672000
Reexamination Certificate
active
06638850
ABSTRACT:
BACKGROUND OF THE INVENTION
This invention relates to a semiconductor device, particularly, a technique effective when adapted to a semiconductor device having a trench-gate structure.
A power transistor has been used for various applications including a power amplifier circuit, power supply circuit, converter and power supply protective circuit. Since it treats high power, it is required to have high breakdown voltage and to permit high current.
In the case of MISFET (Metal Insulator Semiconductor Field Effect Transistor), high current can be attained easily by an expansion of a channel width. In order to avoid an increase in a chip area caused by expansion of a channel width, a mesh-gate structure is, for example, employed.
Gates, are two-dimensionally arranged in the form of a lattice in the mesh-gate structure so that a channel width per unit chip area can be enlarged. A description of an FET having a mesh-gate structure can be found on pages 429 to 430 of “Semiconductor Handbook” published by Ohmsha Limited or U.S. Pat. No. 5,940,721.
For such a power FET, a planar structure has conventionally been employed because its fabrication process is simple and an oxide film which will be a gate insulating film can be formed easily. In the above-described U.S. Pat. No. 5,940,721 shown is an FET having a planar structure.
The FET having a planar structure is however accompanied with the drawbacks that when a gate is formed narrowly, the channel length becomes short and a short-channel effect appears because the channel length is determined depending on the gate length; or when a gate is formed narrowly, an allowable current decreases because the gate has additionally a function of wiring. It is therefore impossible to conduct miniaturization freely. With the foregoing in view, adoption of an FET having a trench-gate structure is considered because it can improve the integration degree of cells and in addition, reduce an on resistance.
The trench-gate structure is formed by disposing, via an insulating film, a conductive layer, which will serve as a gate, in a trench extended in the main surface of a semiconductor substrate and in this structure, the deeper portion and the outer surface portion of the main surface serve as a drain region and a source region, respectively and a semiconductor layer between the drain and source regions serves as a channel forming region. Such a structure is described, for example, in U.S. Pat. No. 5,918,114.
The present inventors developed a technique for introducing impurities into a source region or channel forming region of an MISFET having a trench-gate structure after the formation of a trench gate with a view to preventing a deterioration of a gate insulating film or a fluctuation in a threshold voltage owing to the impurities in the source region or channel forming region and have already applied for a patent as U.S. patent application Ser. No. 09/137,508.
SUMMARY OF THE INVENTION
With an advance of the miniaturization of a device, there is a tendency to make the source region shallower. When the source region becomes shallower, however, it becomes difficult to place a trench gate at a precise position and the end portion of the trench gate does not overlap with the source region. If a source offset occurs, in other words, the trench gate gets out of the source region, by inaccurate positioning of the trench gate, this source offset impairs the functioning of the FET.
An object of the present invention is to provide a technique capable of overcoming the above-described problem and preventing the occurrence of a source offset.
The above-described and the other objects and novel features of the present invention will be apparent from the description herein and accompanying drawings.
Among the inventions disclosed by the present application, representative ones will next be summarized simply.
Provided is a semiconductor device equipped with an FET of a trench-gate structure having a conductive layer, which will be a gate, disposed in a trench extended in the main surface of a semiconductor substrate, wherein the upper surface of the trench-gate conductive layer or gate electrode is formed equal to or higher than the main surface of the semiconductor substrate.
Also provided is a semiconductor device equipped with an FET of a trench-gate structure having a conductive layer, which will be a gate, disposed in a trench extended in the main surface of a semiconductor substrate, wherein the trench-gate conductive layer (gate electrode) has a substantially flat or convex upper surface and this upper surface of the trench-gate conductive layer is formed equal to or higher than the main surface of the semiconductor substrate.
Also provided is a semiconductor device equipped with an FET of a trench-gate structure having a conductive layer, which will be a gate, disposed in a trench extended in the main surface of a semiconductor substrate, wherein the upper surface of the trench-gate conductive layer is formed equal to or higher than the main surface of the semiconductor substrate and the trench gate has, at the terminal portion thereof, a field relaxing portion disposed.
Also provided is a fabrication method of a semiconductor device equipped with an FET of a trench-gate structure having a conductive layer, which will be a gate, disposed in a trench extended in the main surface of a semiconductor substrate, which comprises:
forming a trench, wherein a trench-gate will be formed, in the main surface of the semiconductor substrate;
forming a gate insulating film in the trench,
forming a trench gate in the trench,
forming an insulating film over the main surface of the semiconductor substrate by thermal oxidation so that the film on the trench gate becomes thicker than that on the main surface of the semiconductor substrate by making use of the accelerated oxidation phenomenon,
removing the insulating film by etching and while leaving the thickly formed insulating film on the trench gate, exposing the main surface of the semiconductor substrate, and
selectively removing the semiconductor substrate relative to the insulating film by etching, thereby forming the upper surface of the trench gate covered with the insulating film equal to or higher than the main surface of the semiconductor substrate.
Also provided is a fabrication method of a semiconductor device equipped with an FET of a trench-gate structure having a conductive layer, which will be a gate, disposed in a trench extended in the main surface of a semiconductor substrate, which comprises:
forming a trench, wherein a trench-gate will be formed, on the main surface of the semiconductor substrate;
forming a gate insulating film in the trench,
forming a trench gate in the trench,
forming an insulating film over the main surface of the semiconductor substrate by thermal oxidation so that the film on the trench gate becomes thicker than that on the main surface of the semiconductor substrate by making use of the accelerated oxidation phenomenon,
removing the insulating film by etching and while leaving the thickly formed insulating film on the trench gate, exposing the main surface of the semiconductor substrate,
selectively removing the semiconductor substrate relative to the insulating film by etching, thereby forming the upper surface of the trench gate covered with the insulating film equal to or higher than the main surface of the semiconductor substrate, and
subsequent to the selective etching, introducing impurities from the main surface of the semiconductor substrate, thereby forming a channel forming region and a source region.
Also provided is a fabrication method of a semiconductor device equipped with an FET of a trench-gate structure having a conductive layer, which will be a gate, disposed in a trench extended in the main surface of the semiconductor substrate, which comprises:
forming a trench, wherein a trench-gate will be formed, on the main surface of the semiconductor substrate,
forming a gate insulating film in the trench,
forming a polycrystalline silicon film, which will be a conduc
Inagawa Hiroshi
Machida Nobuo
Ooishi Kentaro
Fourson George
Hitachi , Ltd.
Mattingly Stanger & Malur, P.C.
Toledo Fernando
LandOfFree
Method of fabricating a semiconductor device having a... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method of fabricating a semiconductor device having a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of fabricating a semiconductor device having a... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3146946